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Kardar-Parisi-Zhang equation with temporally correlated noise: A self-consistent approach
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In this paper we discuss the well known Kardar-Parisi-Zh@gZ) equation driven by temporally corre-
lated noise. We use a self-consistent approach to derive the scaling exponents of this system. We also draw
general conclusions about the behavior of the dynamic structure fdgjoy as a function of time. The
approach we use here generalizes the well known self-consistent expé€iBnthat was used successfully
in the case of the KPZ equation driven by white noise, but unlike SCE, it is not based on a Fokker-Planck form
of the KPZ equation, but rather on its Langevin form. A comparison to two other analytical methods, as well
as to the only numerical study of this problem is made, and a need for an updated extensive numerical study
is identified. We also show that a generalization of this method to any spatiotemporal correlations in the noise
is possible, and two examples of this kind are considered.
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[. INTRODUCTION The KPZ equation with uncorrelated noise has been well

. . studied. For the one-dimensional case one can easily obtain
Nonequilibrium surface growth processes often exhibit ayy 4t results ofw=1/2 andz=3/2 by mapping the KPZ
phenomenon calleq kinetic roughening, where t'he surfacgqu{mon into the Burgers equatid] or by using the
develops a self-affine morpholodt]. Much attention has  pqyker-planck equation associated with the Langevin form
been given to a speglal class of mod@ﬂalllstlc d_eposmon, given by Eq.(1) [1]. However, for higher dimensior(g> 1)
Eden, or p(_)lynucleatlon gromi;hyvhlch are described by the there are no exact results and the critical exponents have
Kardar-Parisi-ZhangkPZ) equation[2] been evaluated numerically or obtained using various ana-
lytical methods(for a review see Refg1,4)).

The noise in the KPZ equation is a result of a physical
process. As such it must be correlated in space and in time. If
the correlations in space and time are short ranged it may be
where h(f,t) is the local height of the surface above ae€xpected that the long distance and the long-time behavior of
d-dimensional substrate in @l+1) -dimensional spacey  the system characterized by the exponentndz are those
characterizes the tilt dependence of the growth veloeify, ~ OPtained in the case of uncorrelated noise. There may be,
an effective surface tension, angf,t) is a noise term. however, situations in which the decay of correlations in the
Solutions of Eq(1) exhibit scaling behavior. The simplest N0iSe is algebraic.

quantity to investigate is the surface widti(L ,t) that scales Indeed, in some experimental situations the measured
as(see Ref[3]) scaling exponents are larger than the values predicted by

KPZ [1,4]. A possible explanation of such a departure from

ah(r t N .
% =wWeh+ E(Vh)z + (1), (1)

1 o " i KPz behav?or may be long-range correla}tions in the noise.
W(L,t) = _r<2 [h(F,t) - h(t)]2> = Lag<_z), (2 Such experimental results serve as a motivation for the study
VLA ¢ L of systems with correlated noise in spite of the fact that di-
rect evidence for long-range correlations in the noise is usu-
ally lacking.
Many studies of growth models with noise that is algebra-
anlly correlated in space but uncorrelated in time described
y

whereh(t) is the mean height of the interface at timex is
the roughness exponent of the interface, argthe dynamic
exponent that describes the scaling of the relaxation tim
with L—which is the size of the system. The bracket)
denotes noise averaging. The scaling funciggn) behaves (7(F,))=0 (3)
like g(u) ~ uf (whereg is the growth exponepfor smallu’s
(i.e., for t<L? and like a constanfi.e., g(u)~cons] for  and
largeu’s (i.e., fort>L?. It is easily verified from Eq(2) that R Lo  ar120-d ,
B=zla. The scaling exponentsr and z describe the (n(F, ) n(",1)) = 2D|F = " |*~45(t - t') (4)
asymptotic behavior of the growing interface in the hydro-j) e heen published in the last decade. These include dis-
dynamic limit. crete one-dimensional modelgallistic deposition (BD)
[5—7], solid-on-solid(SO9 [7,8], and direct(discretg inte-
gration of the KPZ equatiof5]]. Many researchers studied
*Electronic address: eytak@post.tau.ac.il the KPZ equation with such noig®-16 and obtained dif-
"Electronic address: mosh@tarazan.tau.ac.il ferent predictions. In spite of the differences in the predicted
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values of the critical exponents, a common picture seems tsions reduce to the well-known white-noise KPZ results in
result from all methods, namely: for smalls the critical one dimension wheip=0.
exponents are the same as for the case of uncorrelated noise.This prediction for the critical exponents is obviously dif-
Then, forp's above a certain critical valug, the exponents ferent from the previous one-dimensional DRG result in two
becomep dependent. respects. First, Ma and Ma do not predict that for small
In sharp contrast to the variety of numerical results ancenoughg¢’s the temporal correlations are irrelevant, so obvi-
theoretical predictions for the critical exponents of the KPZously they rule out the threshold value éf ¢,. Second, for
equation with spatially correlated noise, only few results arep>0.167 the two approaches yield different numerical val-
available for the KPZ equation with temporally correlatedues for the scaling exponents.
noise — not to mention noise that is both spatially and tem- This situation, where only two theoretical predictions are
porally correlated. Similar to Eqg3) and (4), temporally  available for the KPZ problem in the presence of temporally
correlated noise with zero mean can be described by correlated noise, especially when one of th@dRG) is a
. ., R 12d— one-dimensional result, certainly calls for a clarification of
((F0 (" 1) = 2Do(F = 1)t = '[*, (3 this issue. This problem is further complicated by the fact
where¢ characterizes the decay of the correlations over timéhat only one numerical study7], and only in one dimen-
(it is assumed thap < 1/2 or otherwise the correlations does Sion, is available.
not decay, but rather increases with time At this point it is interesting to mention another result for
The first theoretical prediction of the critical exponents ofthe KPZ equation in the presence of noise with special mixed
KPZ in the presence of this type of noise is due to Medina spatiotemporal correlationfnonseparable noise correlator
al. [13] that used dynamic renormalization grogpRG)  D(d,w)]. This is a case where in contrast to systems where
analysis to study this problem. They solved the DRG equathe noise is only suspected to be of long range, here long-
tions numerically in one dimension, for the case whgggs range correlations in the noise follow from direct physical
a short-range function, and found out, just like for spatiallyal’guments. This problem has been studied both numerically
correlated noise, that for small enougfs the correlations ~and analytically by Liet al. [19] with good agreement be-
are irrelevant. They claim that fap>0.167 the correlations tween the analytical and numerical values. Since we deal
become relevant, and the roughness exponent can be fittédth this problem in Sec. VI we will not discuss it further

numerically by now. ] devel ’ A
In this paper we develop a self-consistent approach to
apra(¢) = 1.69 +0.22. © deal with nonlinear Langevin equations, such as KPZ, with
The dynamic exponent can then be obtained using the scalemporally correlated noise. Actually, as will be seen in Sec.
ing relation VI, this approach can be easily generalized to spatiotempo-
rally correlated noise. We begin with a brief derivation of the

Zora( @) = ZQLW. ) scaling exponents of the linear theofglso known as the

1+2¢ Edwards-Wilkinson equatignin the presence of temporally

correlated noise. Then, the full time-dependent two-point

. L o nction for the linear problem is derived. This result will
et al. [17] using the ballistic deposition model. They found serve as a reference for the more general nonlinear discus-

sensible agreement between the DRG prediction and the N&on In sec. Il concepts emanating from a previous self-
merical values they obtained. However, substantial devia- néistent Fbkker-PIanck expansion to the KPZ equation are
tions were found, centered around the expected thresho viewed. In Sec. IV the time-dependant self-consistent ap-
point =0.167. Thus, the authors believe that these discrep'roach i§ establiéhed. It is shown that analysis of the time-

ancies are due to a crossover effect in the simulation and n ependant self-consistent equation in the limit of short times

duitgr??%aptag);& ?/?21g;]ttiZiel?jRDGRgalrgéll?lttlotrr]]ére is onl and long times yields two static equations that are an inter-
P ' yesting generalization of the former self-consistent Fokker-

one more result for KPZ with temporally correlated nmsePlanck expansion
proposed by Ma_and MEL8) who usc_ad a Flory-like §caling In Sec. V a d.etailed asymptotic solution of the self-
approach(SA), originally suggested in the white-noise KPZ consistent equations is obtained. In this section, we derive

fr?;;i)l(ltc;v?i}; Hzgtsshioin?i:arrrg{%r]]h?;aer;(d migtptalned the different possible phases and their corresponding scaling
9 9 pling roug P ' exponents. Special attention is given to the results in one

These predictions have been checked numerically by La

2+44¢ dimension. Section VI generalizes the previous results to the
asi(}) = m (8)  case of noise with arbitrary spatiotemporal correlations, and
two elaborated examples are given. At the end, in Sec. VIl a
and the following dynamic exponent brief summary of the results obtained in this paper is pre-
2d+ 4 sented.
2z ¢) 2¢+d+ 3 © Il. THE LINEAR THEORY: THE EDWARDS-WILKINSON
EQUATION

These values are said to describe the strong-coupling scaling
exponents for all values of the parametgrand for every At the beginning of this paper we would like to discuss
dimensiond. Actually, it is easily verified that these expres- first the linear theoryi.e., the KPZ equation with its cou-
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pling constant set to zeroa=0), namely the Edwards-
Wilkinson (EW) equation[20Q], with temporally correlated 1
noise. The Edwards-Wilkinson equation is

&h 0.8
E(rﬁt) =vV?h+ (fY). (10

As mentioned above, in this paper we discuss temporally§

correlated noise characterized by
0.4

(p(F, )7 1)) = 2Dgd(F = F)|t-t'[*774, (11

0.2

where the case of uncorrelated noise corresponds to the limi

$=0.

The interface that grows under these conditions is known % s 19 15 2 2
to be self-affine, which means that if the spatial coordinates u
are scaled by a factor df (i.e., r—r’=br) then if we per-
form the transformations—t’=b% and h—h’=b%h (with FIG. 1. The scaling functiofigy(u) (¢=1/4 wastaken for this

the appropriate scaling exponents—the roughness expo- illustration). One can see an exponential-like decay for smsl|
nent, andz—the dynamic exponeptas well, the statistical and a power-law decay for larges.

properties of the surface are left invariant. Since the growth

equation(10) is linear, following Ref.[1] it is possible to

extract the scaling exponents by scaling, andh in the hy
equation according to the above-mentioned transformation.

But first, we have to realize that under this transformation the . . . .
noise term scales likey— 7' =b226-0-d12,) (see Ref[1]). where 7, is the Fourier transform ofi(r,t). Thus, using the

Using this we can plug it back into the EW equation and werourier transform of Eq(11), we obtain the dynamical struc-

= e 14
e (1)

get ture factor(or the two-point correlation function
ALpe - By, = (ho b )= 2Dg— 15
ba—zﬁ(rr,tr) — ba—2vvr2h/ + b[z(2¢—1)—d]/277r(rr’tr). qo = < qo —q,—(u> = sz " y2q4' ( )
(12

By Fourier transforming back we get

Now, imposing the requirement that E§.0) remains invari-

. . ; - _ i 0 L

ant under t_h|s scaling transformation, namely, requiring that Py (1) = (hy(O)h_4(1)) = W&{)q 2-4of . (1g2t).

both equationdEgs. (10) and (12)] should be exactly the v P

same, we get (16)
z=2 and a=(4¢+2-d)/2. (13 Herefgy(u) is a scaling function that can be written explic-

itly as

(This gives the roughness exponent as long as the resulting

is positive, otherwise the surface is jldt is easily seen that cogmd) [* y2*

this result reduces to the standard EW exponéres for the  fgw(u) = N 1e'y“dy

EW equation with uncorrelated nojsi the limit of ¢=0.
This simple result shows that temporally correlated noise 1
tends to make the surface rougltarbigger roughness expo- utt2® u?
nenta implies a rougher surfage T'(2 +2¢) 1F2 b+ 1,¢+§ 4| 17
The information extracted so far regrading the EW equa- 2
tion in the presence of temporally correlated noise could
have been satisfactory. However, because we are interestdnere I'(x) is just Euler's Gamma function, angF, is a
in obtaining the exponents of the nonlinear theory as wellgeneralized hypergeometric function. The functigp(u) is
we would like to gain as much insight into the behavior of also plotted in Fig. 1. As can be seen in the figure, the scaling
the linear problem, so that it might help us when dealingfunction behaves like a constant for smai (this corre-
with the KPZ nonlinearity. For example, because of the lin-sponds to short times, that is feg’t<1). At the other ex-
ear character of Eq10), we can obtain the scaling for(and  treme, i.e., for larger’s, this function decays algebraically. In
recover the exponentdy solving the growth equation ex- order to be sure of this power-law tail, and to obtain its exact
actly. Fourier transforming, Eq10), in space and time we shape we calculated the leading behaviors for small and large
obtain u’s and obtained

=coshu) —
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r

1 1420 tions cq{¢p, wpt=0 and dq{¢,, wp}=0. In contrast to other
1- T4+ 2)U o u<l expansions, the full correction, in a given order of the expan-
) sion, of the relevant physical quantities, is really small. In
few(w) ~ 4(1- ¢)<l _ ¢) fact, it is chosen to be zero.
u?4t 2 us>1
I'(2¢) 1+ > o IV. DERIVATION OF THE TIME-DEPENDENT
\ ¢ u SELF-CONSISTENT APPROACH

(18 In this work (following Ref. [22]) we obtain the dynami-
so thatfgy(u) ~u 2729 for largeurs. cal structure facto,(t)=(h,(0)h_¢(1))s, using the same idea
Naturally, the scaling exponents can be recovered easilyf a self-consistent expansion. Here too, the avexage
from @,(t). Since d4(t) depends on time only through the denotes steady-state averaging, whey@) is measured in
combinationq?t we identify the dynamic exponent as the steady state at time=0 and therh_(t) is measured at some
power ofq in this scaling form, so that he@_‘f- In addition,  |ater timet (also in steady stateThe dynamical structure
it can be seen that for smatfs, ®q(t)~q . Thus WE " factor d4(t) normalized byp,=d4(0) (i.e., the static struc-
identify the exponenf’=2+4¢ that can be translated into ,re factoy is thus a measure of the persistence in steady
the roughness exponent via the relatien(I'~d)/2 [see Eq.  gtate of disturbances with wave vectirBecause the noise
(46) below, so that we recovew=(4¢+2-d)/2. is correlated in time, we cannot use the Fokker-Planck ap-
The results obtained in this section will serve us Iater.proach, but as seen in Refgz,za such a Langevin ap-
First, it might be interesting to compare these results with theyroach lends itself as an alternative to the Fokker-Planck
results obtained for the nonlinear thequr eXampIe, in the approach even when the latter is available.
weak-coupling regime of the KPZ equatjorSecond, we Our starting point is the field equation fby,, [the Fourier

will use the scaling function of the linear theory as an ansatzransform in time and space ofr,t)] obtained by Fourier
for the integral equation that will determine the scaling ex-transforming Eq(1)

ponents of the strong-coupling phase of the nonlinear theory.

itha) + thqw + E Cq(mhf,o-hmrz Mqws (22
IIl. NONLINEAR THEORY: THE KPZ EQUATION C,omr

We proceed now to the much harder nonlinear case thafnere vg= v, qum:(l/ﬁ)(l,\@g.mq smdu oem T bE-

poses many technical difficulties already in the uncorrelateg,g an assumed periodicity in time to be taken eventually to

case. _ . o infinity, Q is the volume of the systeitio be taken to infinity
The method we present in the following section is based,g wel), and the noise correlations arézq,”-q-.)
’ w "/ w:

on the same general ideas as the self-consistent expansian~o -2¢ ; i ; -
(SCB used for systems with noise that is uncorrelated inclll%girsg)at)imé [Ntﬁtee,r:?)?stemitsh?lj:ng;]rgznii(;:%]:g?c?ge
time [9,25,26. Namely, an expansion around an optimal lin- Chapman-En,skog spirias done in Refs[21,23) the equa-
ear system. The SCE is based on constructing a FOkkeﬁon is written in the form Y

Planck equation for the probability distribution of the height

function. This step is based on the fact that the noise is not  [(jo + wg)hg, = ,780)] +A > CaermNeoNme = 77310
correlated in time. The self-consistent expansion is formu- t,omr

lated in terms of the steady-state structure fagtortwo- 2 _

point function, ¢,=(h4h_¢)s and its corresponding steady- * Mg~ 0g)hgo] =0, (23)
state decay rate that describes the rate of decay of where\ is going to be taken as 1 but is used at present as an

disturbance of wave vectay in steady state, namely indicator to show the construction of the perturbation expan-
" sion as an expansion . The noise is split into two terms
f (hy(Dh_q(0))dlt nqw:72w+ T such that<778wn9q_(_v>:pqw and the correct
a_Jo @y, [i.e., the Fourier transform in time of the “dynamical
Wq = (hgh_g)s : (19 structure factor®d,(t)] is given by®g, =D,/ (w?+ wé). This

choice implies that ignoring the and \? terms in Eq.(23),

The linear model around which the expansion is conwe still obtain from a linear equation the correby,. In
structed is chosen to yield th@nknown ¢q and wg that  contrast to the case of short-range correlated noise whgre
appear in it as parameters. An evaluationfgfandwy as an  is defined by Eq(19), we must employ here a more general
expansion around that linear model leads to the coupledefinition. The reason is that the power law found to describe

equations the tail of ®(t) for long times renders the expression on the
- right-hand side of Eq¢19) infinite. Therefore, our definition
$a= Pq* Coldp @ph, (20 of wq is based on the assumption of a scaling formbgft)
and — namely
g = wg+ dg{dp, wp}. (21) Dy(t) = Pyf(wgh). (24)

Within this framework, the structure factor and decay rateflt can be easily verified that the dynamical structure factor
are obtained by solving the coupled nonlinear integral equaef the linear theory given by E@16) indeed obeys this scal-
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ing law] The “decay rate’wy is defined as that parameter

that will make Eq.(24) a good approximation for smadj's
and over the whole time range.

Now, Eq.(23) enables to obtaii,, explicitly to second
order in\. The expression fan,,, is multiplied into its com-
plex conjugate and only terms up to second ordek iare

retained. At the end the expressions are averaged over the

noise 7, and we get

(wz + (oé)@qw = qu +2\? 2 Cq(qu—e—mq)(zr(Dmf

¢,mo, 7
+\2D%()w 2 - Dy, ]
- 2)\2(Vq — 0g) 0Py,
—iw+o
+4\? E Cq(mcm-mq)qwq)mr

¢, mo,7

+4)\2 E Cq—f—mcf—qmq)mrq)qw

¢,mo,7

o+ w,

jw+
% o+ g .
—lot w,

(25)

Now \ is set to be 1. The result is an equation of the form

Dy, =Dy, +e{P,}. Equatinge{®,} to zero yields

[wZ + wcz] + Z(Vq - wq)wq]q)qw -2 2 |Cq€m|2¢)€o‘¢)mr

{,o,m,7
—iw+w iw+ o,
+4 Y, ComCran®PaePrmi| — 9y 2" %
&%’1,7 gém~¢gqm=qaw mr[ i+ wy “io+ o
=2D%q)w?* (26)

We divide the last equation_ byw?+ wz) and using the defi-
nition Cqem=A¢ q-¢,e+m/ VOT (as weII as letting) and T
tend to infinity) we obtain

[1+2—q—q—q(V — )zf" }cpqw
w”+ Wy
d 4 d0'|A€q €| cb(g q—{,w—o
(2m92m w?+ wé
di¢ do Do Py-¢,0-
I - qo > q{,0-c
(2md2q 0 Pag f{[iw+ wgllio+ o]
(I)qu)q—f’,w—(r
[—ioc+w][-io+ wq]
-2¢

+4

0
w§2D ().

(27)
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[ 4 oltam 00 9] o
w?
q
l di% do
- (2 )d |A€q €|2(D€O'(I)q {,w—0
dd¢ do
(27T)d {’q (Aqq €0_2+ q€w—
2D0
- ﬂw—m (29

2
@y

Fourier transforming back from frequency domairto real
time t, we obtain

[1 Z(J_un] q(t)

¢
__f 2 )d|A(q (|2CI)p(t)CI)q ((t)

Yl o

X f de el (1) Pyt -t)

dd¢
(2 )d €q €Aqq —C

D%q)

=— V-2
I'(2¢)cog mh) o}y

(29)

where on the right-hand side we have written only the lead-
ing larget behavior.

This result suggests that in the long-time limit, the time-
dependent two-point function has an algebraic decay of the
general form

q)q(t) ~ Axﬁbq(wqt)_yv (30)

whereA” is a numerical constandy is the steady-state two-
point function, andy is an exponent that will be determined
later.

Equipped with the last result we can see that the first
integral on the left-hand side of E(R9) is negligible com-
pared to the other terms on that side in the long-time limit.
The reason is that this integral decays&%, while the other

The last equation is the basic equation for our followingterms decay as$™?, making that integral subdominant for

discussion. We consider first the small behavior (more
specifically w/ wy< 1) that corresponds to the long-time de-
cay of the time-dependent structure factor.

A. Long-time decay of the structure factor

The first smallw simplification is obtained by neglecting
ol wq. This yields

larget’s.

Next, using this simplification as well as the scaling form
(24), we analyze Eq29) for smallg’s (i.e., in the large scale
limit) in the spirit of Refs[9,25]. In order to achieve that, we
break up the integral into the sum of two contributions cor-
responding to domains df integration, with high and low
momentum. When performing this under the assumption of
long times(i.e., wyt>1) we obtain the following equation:
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%_q ¢qf(wqt) -

Wgq (2 )d

+J dd€A(q(Aqeq¢ ({f} {)]

_ DY@y

AT (2¢)cod )

wheref, inside the curly brackets, is just the scaling func-
tion, g is the upper cut-off of the smalt| region, andD; is

a constant that comes from the contribution of the Id@e
region of the first integralsee Ref[25] Sec. VI, where such

(0>, (31

an estimation of the contribution of large momenta is also

employed. In addition, we used the following notation for

the integralF:
i)
0

We conclude that®y(t) ~ A ¢y(wgt) 729 (ie., y=1
-2¢). And Eg.(31) can be rewritten as a time-independent
equation relating theb’s and thew’s

g (@do-0Xf (x)dx.

), 2L

wq_ 0

(32

A“ﬁ{qu +D0° -

P-¢
+ (Zw)df d €A{gq gAqq g q_ (

_ DY@y (w)
['(2¢)cogme)

It is interesting to compare the result above dgy(t) with

Wq

{fh,—

(,Uq(

)

(33

the decay in the case where the noise is not correlated in time

(namely, wheng=0) [22,24. In that case the long-time be-
havior of ®(t) is given by

Dy(t) o (wgh) P Pexd - (wgt) ] (34)
(i.e., a stretched exponential

The limit as¢ tends to zero ofb (t) should yield a short-
range decay. The expression in E§0) (given thaty=2¢
-1) tends to a function that scales &3. This should be
viewed as a function that scales ad) at larget’s, or a
short-range function. Actually, a direct inspection on the
right-hand side of Eq(29) recovers this. Since the denomi-
nator of the right-hand side contains tfe function, the
whole expression vanish afstends to zero. Checking more
carefully, for =0 the right-hand side of Eq29) is propor-
tional to exp-wqt]. If we try now a solution ®(t)
xexd-wqt] we find that it does not work. The reason for
that and how to obtain the correct asymptotic behafkar.
(34)] is detailed in Ref[22].

To complete the picture given so far, that is, after finding
the power law that governs the structure factor, we need t
know the steady-state structure factpy and its associated
“decay rate”wq that will characterize the short-time decay as
well.

PHYSICAL REVIEW E 70, 011601(2004

B. Steady-state properties

In this part we obtain another equation, which together
with Eq. (33) forms a complete set of coupled equations that
will yield the smallq dependence of, and w,. In order to
achieve this we would like to discuss E@7) in the limit of
short times as well. Here, it is more convenient to treat the
time-dependent equation directly, so we Fourier transform,
Eq. (27), to yield

Dy () + (vg— wg) f_ de 'l (t-t')
2

"2 f d| A ol f dt’

XD ((t=t)D(t~t')

+ dUA, o Ay f dt’ J dt’e ot ~oqt”
o [ #once e [[ o[ aeenios

XDy () Dt —t' =)

0 0
+ f dt’ f dt”e“’ft“’“’qt"d)q_g(t’)CIDq(t—t’—t”)}
D%q) f

Settingt=0 and following the same steps described above
for long times(i.e., breaking the integration into large and

small || regions, and discussing the smallbehavior of
each gives the following short-time evaluation of E(5)

Vgq* 2 )d¢Q|:
+J OddgAﬂﬁﬂ‘_f(ﬁq_er({f}’ﬂ]__e,ﬂl)}
Wy ¢ Wy

ot
2w

q

—2¢>e| wt

(35

w+w

2 1
- d|:_f dY%| A, e 2pq- (¢eF3<{f} =t )
(2m)°| wyq wyq wq
+Ep+ wi?-l]
q
_ D@
= COS(ﬂTd))(wq) ; (36)

where as beforél, Ez, and Eg are (renormalizatioh con-
stants. In addition, we used the following notations:

2] [ of o

xf(ﬁﬂx>f<ﬂ]x+y>, (37
Wy Wy
and
F3<{f},ﬂ*‘—f,ﬂ>: f ‘Xf<—q—x)f(w€x>dx. (39)
Wq Wq 0 Wq Wq
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Up to this point we obtained two coupled equationsdgr ~ DY) (B ~2¢
and w,. Note that the equations above depend on(ﬂﬁ Aq'[(2v+ Dy’ - B +J7(q)] = %.
known) functional form of the scaling functiof. We will
proceed now as far as possible without specifying that form, (47)
to obtain many general results about the exponents. In the
actual numerical calculation of the exponents we will resor@"
to an approximate form off to be described later. DO(q) (B2
We wou,Id like now to splve Eq$33) an_d(36) in the I|m|t. Al +E)@T +I5(@AGT - 15(q) - Ey= q
of small g's. For convenience we rewrite these equations cog )

using the explicit form ofA, , as (48)
2 < D%(q)(wg)*? _ -
b (2v+D1)g" — wq+I7(Q)] = — , where we have neglected thg term in Eq.(40) as it is
A”codm)I'(2¢) negligible compared to the left-hand side in the limit of small

(39 gs (sincep<1/2).
It is interesting to note that these equations are a non-

and trivial generalization of the SCE method developed in Refs.
5 _ _ Es [25,26. More specifically, if we take the limit ofp— 0, and
(v+EDa°dg+ 11 (@) g 15(a) —Ex— — plug in f(u)=e™, which is the scaling function of the linear
“a theory when¢=0, both equationsi.e., Eqs.(47) and (48)]
_ DO(q)(wg)‘z‘/’, (40) reduce to the equations obtained using SCE. It is a surprise
cog 7 ) to find this similarity because the self-consistent expansion
was originally derived using the Fokker-Planck equation as-
where sociated with the Langevin-like KPZ equation, while the
2 (o O U derivation given here deals directly with the Langevin form.
I5(q) = 8\ f dd€[€ (G-0lq-(q- e)](b ) Once we realized this surprising similarity, it is only natural
(2m)d Wg-¢ a-t to follow the asymptotic solution that is used in the well-
° established SCE literature, and is detailed for example in
X F1<{f},—"> , (41  Ref.[25].
wq_(
> L L L > V. DETAILED ASYMPTOTIC SOLUTION
1<(q) = 8\’ f“"dde[é’ (G-0ll4g-G-0]
1 (2m)¢ wy As mentioned above, in performing the asymptotic solu-
tion of the self-consistent equations, we follow previous
quq_ng({f},ﬂ_—e,ﬂ), (42)  work. We also focus here, for singplic_ity, on the case of noise
Wy Wy without spatial correlationf.e., D°(q)=Dg]. However, Egs.
and (47) and (48) are valid for any spatial correlations of the
noise[i.e., for anyD%q)], and the more general case is post-
2 oo 0 (A — P2 poned to the following section.
15(q) = 2\ df ddew G-0 ¢q_€¢€F3({f},&_—€,&>. The first step in the asymptotic solution is to evaluate the
(2m) wq wp W

integralsl; (), 15 (g), andJ=(q) using the power laws given
(43 in Egs.(44) and(45)

Note that the integrals in Eq§41)—(43) are cut byq,. qq is

2 T -

chosen in such a way that belowdt and v, are expected to 17(9),J5(q) = {qd+2_r_ ford+2-1"-2z>0 (49)
be power laws i, q Z ford+2-1I'-z<0,

bq=Aq", (44)

15(q) > const ford+4-2I"-2z(1-2¢)>0

and 24d #4277 ford+4 -2 - 22(1-2¢4) < 0.

wq = B¢, (45) (50)
where z is the dynamic exponent, anld is related to the We consider now the upper-right quadrant of 1tigz)
roughness exponeit by plane, where a solution may be expected. The lide®

a=(T-d)2. (46) -I'-z=0 andd+4-2I"-2z(1-2¢)=0 divide the quadrant

into four sectors. We investigate next each sector separately
As mentioned above, the integrals in E¢$1){(43) are  to decide whether a solution of the Eq4.7) and (48) can

cut by qp, and therefore we can readily use these power lawgxist there or notin the limit of smallg’s).

inside the integrals. Using the power laws we can also re- Sector o is defined byd+2-I"'-z>0 and d+4-2I"

write EQs.(39) and(40) as —2z(1-2¢) >0. In this sector Eqg47) and(48) reduce to
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. 5 DB 2¢ oy I'=2+4¢ that is just the solution obtained for the EW equa-
Aq[(2v+ D1 +Dy)g” - Bof] = Acos( q -, tion with temporally correlated noisgsee Eq.(13) abovd.
mh)'(2¢) . : = T : .
Following the above discussion it is realized that this solu-
(5D tionis possible only fod> 2 +4¢. Therefore, the lower criti-
and cal dimension in this problem id,=2+4¢ (provided ¢ >0,
otherwised,=2 as mentioned aboye
op _ DB Sector y is defined byd+2-I'-z<0 and d+4-2I'
A(v+E1+E)q"" -Es—Ep= mq - (520 _27(1-2¢)>0. In this sector Eq(52) is replaced by
First, the possibility that 2F>-2z¢ can be ruled out 2-T -0z _ = _ — DB ¢ 247
immediately, becaus® is positive, so that Eq51) cannot be Alv+ B + ABq Es—Ep= cos(me)

balanced in leading ordé€in powers ofq). If 2-T"<-2z¢ (55)
then the right-hand side of E(p1) is negligible compared to
the left-hand side, so that the leading order equations are First, the two defining conditions of this sector imply that
identical to those obtained for the white-noise KPZ problemthe first term on the left-hand side is negligible compared to
and thus the standard KPZ results from R¢825 are re- the second term, and the second term is negligible compared
stored. Therefore, we gdt=2 andz=2. Sincel'’=2 andz to the term on the right-hand side of the equation. Therefore,
must be positive, the condition 2= -2z¢ can be met only looking at the simplified equation, we must conclude that
for ¢=<0. Namely, for the case of noise anticorrelated in$=0 and E5—E,=DB ??/cos(m¢). However, this is im-
time [27]. Such a solution holds only fa>4(1-2¢). possible because the left-hand side is negative definite.

The other relevant option is A2==-2z¢. This implies that Sector 6 is defined byd+2-I'-z<0 and d+4-2I
¢ must be positive]'>2 andz=2. There is now an inter- -2z(1-2¢)<0. In this sector Eqs(47) and (48) take the
esting difference between the case 2 andz=2. Forz>2, form
the leading order terms in Eqgl) and (52) lead to two

linear homogeneous equations in the quantifiesnd B2, AqT| (2v+ Dy - B+ 8\? éqd+4—F—zG({f} I.2)
This implies that in order to have a physical solution with ! (2m"B Y
A,B>0, we must have the determinant of the coefficient D.B~2%
matrix vanish, namely, =—20 q 22 (56)
A*cos(md)'(2¢)
F(2¢)A"(2v+Dy+Dy) = (v+E; + Ey). 53 g

Since the quantitieB,,D,,E;,E, depend on the behavior N2 A
of ¢ and w, for £>qq, on the total upper cutoff etc., it is A +E)qPT - ———q™* T F({f},1,2) - E,
difficult to envisage that Eq53) can be fulfilled other than (2m°B
accidentally for nongeneric values of the parameters of the D.B-2%
system. The case with=2 is different. The two equations =— g7 (57)
for the coefficientsA and B have now an additional term— cos(me)

AB on the right-hand side of the first equation. This enablesyhereG({f},T",2) is given by
now a generic solution for the coefficients. In that cése

=2+4¢. Considering the defining conditions for the sector | olt-@-Dle-(@-1]
we find that within the sector such a solution is possible only G{fhI2) = [ d% N
for d>4.

Sector B is defined byd+2-I'-z>0 and d+4-2I' A T t?
—-2z(1-2¢) < 0. In this sector Eq(52) is replaced by x[e= 17 Fy| {f}, & {2 ' (58)
D,B™%¢ i

A(v+Ey + BT - Egq4 27— E,= =00 20z, andF({f},I',2) given by

costm?) [f- (e~ D][e- (8- 0]
(54 F{f}L.T,2) = - 4] ddt E:

while Eg. (51) remains intact. B2 1

The analysis for the possibility 2F=—-2z¢ in sectorg is ><|”e—ﬂ‘F|:2<{f}, . ,—Z> +f d%[t- @-19)]?
similar to the above analysis for sectar The only differ- ot
ence is that due to the different defining conditions of the wle— 1Tt TEL(If) e -T2t 59
sector, such a solution witt=2 andI'=2+4¢ holds within &1 (fhle- 171, (59
the sector for 2+4é<d<4. & is a unit vector in an arbitrary direction, and thategra-

Combining the results for sectossand 8, we see that for tion is over alld-dimensional space.
¢=0 the noise term is irrelevant, and the critical exponents From the defining conditions of this sector, it is possible
that describe the EW problem with uncorrelated noiseto neglect theg? term in the brackets on the left-hand side of
(namely '=z=2) are restored. This option is possible if Eq.(56) compared to the third®*1Z term (sinced+4-T
d>2. In addition, for¢>0 we get the new solutior=2 and  —z<?2). In addition, it is also possible to neglect té™
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term on the left-hand side of E¢57) compared to the sec- nondecreasing function @f (that means that the inclusion of
ond q%4 22 term (sinced+4-2'-z<2-T). It is easy to  temporal correlations does not make the surface smoother
see that for¢ <0 all the usual KPZ results are trivially re- This implies thatl" ,(d) =I"y(d), and since we know o(d)
tained, as the right-hand side is irrelevant then. Therefore, wiom the white-noise KPZ problem it is easy to determine a
focus on the case>0 and thus the constant term on Eq. lower bound on¢, denoted bya.(d), such that the new so-
(57) can be neglected compared to the noise term on thgition I'=(d+4)(1+2¢)/(3+2¢) is not possible below it.
right-hand side. The specific value ofg.(d) is ¢.(d)=[3y(d)-d-4]/2[d

Now there are two options: First, whéh>2z(1+2¢) then  +4-r(d)]. The fact that",(d) is nondecreasing as a func-
the right-hand side of both Eq&56) and (57) is negligible  tion of ¢ implies two possible options. Either the expression
Compared to the left-hand side. In that case the critical eXp0F¢(d) gives the Strong-coup"ng solution for the whole range
nents are determined by a combination of the scaling relatiogf g < $<1/2, or it is the solution for smakp and crosses
d+4-T'-2z=0, and the equation over tol'=(d+4)(1+2¢)/(3+2¢). Such a crossover can oc-

F[{f},T,2("]=0, (60)  Cur only aboveg.(d). _

We turn now to the actual evaluation of the exponents. To
[whereF is given by Eq.(59) abovd. We denote the solu- do that we need an ansatz for the scaling funcfion which
tions of the transcendental equation By(d) (since the ex- the form of the equations foF and z depend. Since the
ponentl” is dependent on the spatial dimenstband on¢).  equations were constructed in such a way that second-order
For example, in one dimension, and ¥+ 0 it can be shown  corrections to the quantitief, and g vanish, we use as in
analytically thatl’o(1)=2 and in two dimensions a numerical Refs.[22,23, the zero-order form of the scaling function in
solution of the equatioiagain for$=0) yields I'o(2)=2.59  evaluating these corrections. The scaling function in zero
(see Refs[9,25]). A discussion for generap's will be given  order is the function obtained for the corresponding linear
below. Still, we must remember that a solution here is obtheory, given by Eq(17). We therefore simplify Eq(60)
tained by requiringl’>z(1+2¢). This yields a necessary using this ansatz. First, one quantity can be evaluated exactly
condition for the existence of such a solutiah<[3I" ,(d)
—d-4]/2[d+4-T ,(d)].

The second option in this sectorlis=z(1+2¢) [the pos-
sibility I'<z(1+2¢) is irrelevant because one cannot bal-
ance the equations and still be consistent with the definingn addition, the functionaF, can be simplified so that it
conditions of sectos in that situatioff. Then in order to involves only one-dimensional integrati¢instead of double
balance Eqs(56) and (57) we must also havel+4-2"-z integration
=-2z¢. This leads to the new solution=(d+4)/(3+2¢)

-2¢

Fulfena) = | e aioo= "0 61

and I'=(d+4)(1+2¢)/(3+2¢). However, this solution is * >

valid only if Eq. (60) does not yield exponentmamely,T’,, Fo({fewhab) :f de dye™Yfew(@x) few(bx+y)
andz,) that make theg®4-2" term in Eq.(57) dominant. o 70

Not surprisingly, this requirement translates into the condi- codmep) [ |u* 1

tion ¢>[3I'4(d)-d-4]/2[d+4-T 4(d)]—implying either a = Tf duuz_+11 “iu

smooth transition between the two types of solutions or a -

complete domination of the first optidine., I'4(d)]. Actu- at*?*(1 —ibu)™?? - (1 —ibu)

ally, the existence of this new solution also requires X [a2- (1 -ibu)?] (62)

F[{f},I",z(I")] <0. This requirement turns out to be the same
as I'y(d) <Tpew=(d+4)(1+2¢)/(3+2¢), so that this extra (note that the integral is real, as it should be, even though the
requirement is fulfilled automatically sinde=z(1+2¢). integrand is complex
To summarize the results of sectdrwe found two pos- In order to illustrate the outcome of this analysis we spe-
sible strong-coupling solutions. The first solution is obtainedcialize to one dimension. First, in one dimension only strong-
from Eq. (60), and its scaling exponents are denoted bycoupling solutions are possible as the critical dimension is
I',(d) andz,(d) (this solution reduces to the standard KPZ2+4¢. Second, as mentioned above, in one dimension Eq.
results whenp=0). The second solution is given by the ex- (60) can be solved analytically fop=0 and it givesl'y=2.
plicit expressions I'=(d+4)(1+2¢)/(3+2¢), and z=(d This corresponds to a roughness exponentgf1/2 [using
+4)/(3+2¢). Then, in a given dimensiod and for a given Eg. (46)] and to a dynamic exponent a@§=3/2 [using the
¢, the actual strong-coupling exponents of the KPZ problenscaling relationz(I')=(d+4-I")/2]. for higher values ofp
with temporally correlated noise are justmaxI’,(d),(d one has to solve Eq60) numerically using the ansatz of the
+4)(1+2¢)/(3+2¢)} and its corresponding. Thus, the linear theory. These results are summarized in Fig. 2 as the
transition between the two solutions as a functiongofif solid line. The figure also presents the possible second solu-
such a transition existss continuous. However, it should be tion T'=5(1+2¢)/(3+2¢) [that corresponds toa=(1
emphasized that for a speciffcone of these solutions domi- +4¢)/(3+2¢)] andz=5/(3+2¢), and a continuation oF,
nates so there is no phase transition between them. as a dashed line. However, since the this solution is smaller
Based on the results of the linear theqd8) and the thanTy, it is practically irrelevant, sincé’, dominates the
numerical simulatio17] we expect the exponeimtto be a whole ¢ range.
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— SCE found no “threshold behavior.” That is, we found a continu-

DRG [10] v ous variation of the scaling exponentsandz as a function
0.9f| 4 Simufation [17] A . of ¢ over the whole range of possiblg's, rather than no
- gigﬁﬁgfgp'fg;ﬁ’ﬁ’;m here) | variation of these exponents up to a critical valueggfand

a quasilinear behavior from that point on.

Second, we found a solution for the exponents for every
¢, while the DRG approach found no solution aboge
=0.46 (claiming that no stable surface can grow under the
condition 0.46< ¢<0.5). Interestingly, the threshold, (the
crossover point that was predicted using DRG id=1
(namely 0.16Y is the same as the lower bound we found
above(¢.=1/6 for d=1). Our exact statement was that for
¢>1/6 the second strong-coupling KPZ solution becomes
possible in principle(but not in practicg Therefore, the
DRG result might reflect this exact statement.
> Third, we found thar is a decreasing function @f, while

The roughness exponent o

0.65) — 5CE o] Pd the DRG approach predicts an increasing valuez.oThe

06l A Simulation [17] e ] reason for this difference is not clear, but it might stem from
- 2§§|‘|’2§ fngr ég‘;ﬁ"[ﬂ’g]ﬂt here) | - the definition of the typical decay rate, which was actually

0.55¢ a S defined using the scaling for24), rather than a more “tra-

S ditional” definition such as Eq(19). The reason for using

] this definition is that the integral over the scaling function

’ f(u) does not converge, because of its power-law tail. Actu-
ally, in the case of the linear theory, where everything can be
calculated exactly, the only possible definition is the one we
used. Now, since the introduction of temporally correlated
noise certainly slows down the relaxations in the system, this
might have caused an artifact of increasimdpecause larger

o

4]

\
N

The growth exponent B

0.4 0.5

Z's are interpreted as longer relaxation times. However, in
‘ K . ’ our approach, we do see this slowing down clearly, but it

18l — SCE ] does not come from a larger dynamic exponein an ex-

... DRG[10] ; ; ; :
A Simulation [17] using z=0/B ponential de(_:aylng s_callng fu_nct|on, _but rather from a very
1.7 _ - Second SCE (irrelevant here) 1 slowly Qecaymg sca_lmg_ function, v_vh|ch does not decay ex-
- - Scaling approach [18] ponentially. Thus, this difference might reflect a better under-
1.6 A A o] standing of the time-dependent dynamics in such driven sys-
, o tems.

Comparison of the two theoretical predictions with the
only numerical study of this problerftaken from Ref[17],
and plotted in Fig. Ris inconclusive as well. It can be seen
that the numerical simulation predicts a continuous variation
of the scaling exponents wit#, rather than threshold behav-
, , , _ ior, and thus supports our predictions. In addition, when
Y 0.1 0.2 0.3 0.4 0.5 comparing the actual values of the exponents one can find

¢ good agreement between our results and the simulation for

FIG. 2. (a) The roughness exponeuny, (b) the growth exponent Sma” ¢'s (up to ¢~ 1/4). However, for largexp’s the simu- .
B, and(c) the dynamic exponer, as a function of the exponent lation found much larger expolne'nts, ar]d a bettgr numerical
& for decay of temporal correlations @ 1. Note that the dynamic adreement with the DRG prediction. Still, there is some ad-
exponentz was inferred for the numerical results of Rgf7] from  ditional disagreement between the two, as the simulation
a and B using the scaling relatioa= /8. Second, note that the found a stable surface for at's while the DRG predicts a
DRG result is possible only up t¢=0.46. Third, the dashed line Stable surface only up t$=0.46. The last point concerns the
shows our second possible solutiarsing SCE that turns out to be ~ value of the dynamic exponemtfor various values ofg.
irrelevant here, since it is smaller than the Seffor all ¢'s. Strictly speakingz was not given in Ref{17], but we recon-

structed it using the well known scaling relatiza o/ 8 that

It is particularly interesting to compare this one- is valid under very general conditiorjd comes from the
dimensional result to the DRG result that was presented iframily-Vicsek scaling relatiofi3]—see Eq(2)]. The result-
the Introduction[10], and plotted for convenience in Fig. 2. ing z [see Fig. 2 is very confusing.z has no clear
Generally speaking, the two methods disagree on the valugendency—it just fluctuates arourmk3/2. Therefore, the
of the critical exponents significantly over most of tle  numerical data does not resolve the question of decreasing/
range. Three substantial differences can be observed betwemtreasingz. Certainly, future numerical results will be of
the two methods. First, using the self-consistent approach wgreat interest to clarify these issues.

The dynamic exponent z
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The results obtained here are also in conflict with therandom phase shifts, and it boils down to solving the KPZ
result obtained by the scaling approa@®) [see Eqs(8) equation in two dimension@nore specifically the 2+1 cage
and(9) above, and Fig. R The whole structure of the solu- with a noise term that has the following spatiotemporal cor-
tion is different between these methods, so in spite of a forrelations:
mal similarity between the SA results and the second strong- 5
coupling result, we found, (both predict nonlinear (p(FO) (" 1)) = a(Jm)

. . . O, T )
dependence o and give rational expressions for the scal- V=12 + (t-t')?
ing exponents, where the numerators and the nominators areh .. . . . 5
linear functions ofd) there is a big difference between the Wherer is a two-dimensional vectdi.e., r=(x,y) e R°]. In
predicted scaling exponents. Actually, the numerical study oP'der to apply the method presented above for finding the

(65)

this problem (see Ref.[17]) seems to favor our result
Therefore, the status of the SA result is questioned.

VI. GENERALIZATION TO SPATIOTEMPORALLY
CORRELATED NOISE

— 2
Up to this point we discussed the relatively simple case of Do/ (4°+w

noise without any spatial correlatiofise., D%(q) =Dg]. How-

ever, including spatial correlations bears no principal diffi-
culty to the analysis presented above. For example one can

just replaceD, with D%(q)=Dyq % in Eq. (51) and by fol-

lowing the steps from that point the scaling exponents can be
easily extracted. For the sake of presenting a complete pic-

ture we briefly summarize the results obtained for this case _ . .
tAs mentioned above, this expression should replace the

First, there is the weak-coupling solution, which is again jus
the corresponding EW result for such a noise, given by

z=2 and T=2+2p+4¢. (63)

The weak-coupling solution is possible fdr 2 +2p+4¢, so
that here the lower critical dimension ds=2+2p+4¢.
Second, there is the strong-coupling solution, given by

z,(d) 2p+ (1+2¢)z,(d) <T,(d)
z=yd+4-2p
3+ 2p+(1+2¢)z,(d) > I'y(d)
and
I'4(d) 2p+ (1 +2¢)z,(d) <T,(d)
F'=4(d+4-20)(1+2¢)
3+ 20 2p+(1+2¢)z,(d) > T 4(d),

(64)

where as beforel’,(d) is the solution of the Eq(60) and
z,(d)=[d+4-T y(d)]/2.

5. Critical exponents of this model we have to Fourier transform
the noise correlator first

HG+q)dw+ o)

q2+w2

(7(G,0) (@', 0") = o(IM)? , (66)
(where g is a two-dimensional vectprso that D(q,w)
%) [with Do=a(IJm)?]. Now, for smallg's o,
=B, and we can evaluate the Fourier integral explicitly
(assumingz>1)

1 7 e@d

gt 1l _ 1 me*a
o (0 + wé)(wz + q2) @ wg 2 qzlwé - q2+z 2B

e}

(67)

right-hand side of Eqs(29) and (35). One can easily be
convinced that this term is subdominant in the long-time
limit, and therefore drops out of E@33). However, in the
short-time limit this term is not negligible, and therefore
modifies Eq.(36) accordingly.

Following all the required steps from that point on leads
to the resultd’=z+2 andd+4-2z-T"=0, so that for the case
we were interested ifd=2) we get

10
and I'=—,

3 (68)

4
z==

3

identical to the analytic result presented in Rdf] (a nu-
merical analysis presented there also verifies this nesult

VIl. SUMMARY AND CONCLUSIONS

In this paper we developed a time-dependent self-
consistent approach to deal with the KPZ equation driven by
a temporally correlated noise. This achievement was made
possible thanks to the observation that there is a time scale

Furthermore, the method presented above is not restricteghparation between short-time and long-time behavior of the

to noise terms that have separable correlators, D&, w)

system. More specifically, it was realized that when tempo-

=D%q)w™2?, and can just as well deal with nonseparablerally correlated noise is present in the system, then slow

correlators[that is, any functional form ob(qg, w)]. In that

relaxations of various time-dependent quantities should con-

case, the only difference would be to replace the right-hangrol the long-time behaviofin this case algebraic decay of

side of Eq.(27) by the expressioD(q,w)/(w2+w§) with the
requiredD(q, w) inside.

the time-dependent correlation functidrn(t)]. In addition, it
was seen that the short-time behavior is influenced by the

In order to demonstrate this option, we discuss an intertong-time behavior and vice versa.
esting application of this approach to the KPZ equation with To summarize the results briefly, we found that the KPZ

a very special kind of spatiotemporally correlated nagibés
result was mentioned at the end of the introdugtiorhis
problem was previously solved by kt al. [19] in the con-
text of vortex lines in the three-dimensional model with

equation with temporally correlated noise, just like the prob-
lem with white noise, has both a strong-coupling and a weak-
coupling solution. The weak-coupling solution is described
by the scaling exponents of the corresponding linear theory
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(EW equation, and is made possible for dimensions higherresult presented here might contribute to the clarification of
than the lower critical dimensioth,=2 +4¢ [the specific val-  this fundamental problem. Since the results of the self-
ues for the exponents are given in E§3)]. The strong- consistent approach are different from those of DRG, in that
coupling solution, which is relevant also for low dimensions,no threshold behavior appears, and even more significantly
is described by scaling exponents that are a result of a conlifferent from the results of the scaling approach, it is a good
petition between two possible solutions. First, there is ardea to address this question numerically in order to decide
extension of the classical white-noise KPZ solution denotedetween the competing results. A revision of the DRG ap-
by I' ,(d) that is derived from an integral equatioB0). The  proach to this problem might also help here, since, as was
other possible solution is a new strong-coupling solution anduspected in Sec. V, the difference between the DRG results
is given in Eq.(64). The actual exponeit that describes the and those derived here in one dimension might stem from a
surface is the maximum between the two options. For smalnisunderstanding of the long-time behavior of the system.
¢'s I'y(d) is the solution but it mayor may not, as in the As was shown in the last section, there is a big advantage in
one-dimensional cas&ross over in a continuous manner to using the self-consistent approach as it can be generalized in
the second solution. For a detailed discussion and comparéa simple way to discuss noise with arbitrary spatiotemporal
son to other methods in one dimension see Sec. V. correlations. Two such examples were discussed, and explicit

The problem dealt with in this paper is not a new one, yefpredictions were made. Here too, future research may help to
very few results are available in the literature. Therefore, theest the validity of these predictions.
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