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In this paper we discuss the well known Kardar-Parisi-Zhang(KPZ) equation driven by temporally corre-
lated noise. We use a self-consistent approach to derive the scaling exponents of this system. We also draw
general conclusions about the behavior of the dynamic structure factorFqstd as a function of time. The
approach we use here generalizes the well known self-consistent expansion(SCE) that was used successfully
in the case of the KPZ equation driven by white noise, but unlike SCE, it is not based on a Fokker-Planck form
of the KPZ equation, but rather on its Langevin form. A comparison to two other analytical methods, as well
as to the only numerical study of this problem is made, and a need for an updated extensive numerical study
is identified. We also show that a generalization of this method to any spatiotemporal correlations in the noise
is possible, and two examples of this kind are considered.
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I. INTRODUCTION

Nonequilibrium surface growth processes often exhibit a
phenomenon called kinetic roughening, where the surface
develops a self-affine morphology[1]. Much attention has
been given to a special class of models(ballistic deposition,
Eden, or polynucleation growth), which are described by the
Kardar-Parisi-Zhang(KPZ) equation[2]

] hsrW,td
] t

= n¹2h +
l

2
s=hd2 + hsrW,td, s1d

where hsrW ,td is the local height of the surface above a
d-dimensional substrate in asd+1d -dimensional space,l
characterizes the tilt dependence of the growth velocity,n is
an effective surface tension, andhsrW ,td is a noise term.

Solutions of Eq.(1) exhibit scaling behavior. The simplest
quantity to investigate is the surface widthWsL ,td that scales
as (see Ref.[3])

WsL,td =
1
ÎLKo

rW
fhsrW,td − h̄stdg2L1/2

= LagS t

LzD , s2d

whereh̄std is the mean height of the interface at timet, a is
the roughness exponent of the interface, andz is the dynamic
exponent that describes the scaling of the relaxation time
with L—which is the size of the system. The bracketk¯l
denotes noise averaging. The scaling functiongsud behaves
like gsud,ub (whereb is the growth exponent) for smallu’s
(i.e., for t!Lz) and like a constant[i.e., gsud,const] for
largeu’s (i.e., for t@Lz). It is easily verified from Eq.(2) that
b=z/a. The scaling exponentsa and z describe the
asymptotic behavior of the growing interface in the hydro-
dynamic limit.

The KPZ equation with uncorrelated noise has been well
studied. For the one-dimensional case one can easily obtain
exact results ofa=1/2 andz=3/2 by mapping the KPZ
equation into the Burgers equation[2] or by using the
Fokker-Planck equation associated with the Langevin form
given by Eq.(1) [1]. However, for higher dimensionssd.1d
there are no exact results and the critical exponents have
been evaluated numerically or obtained using various ana-
lytical methods(for a review see Refs.[1,4]).

The noise in the KPZ equation is a result of a physical
process. As such it must be correlated in space and in time. If
the correlations in space and time are short ranged it may be
expected that the long distance and the long-time behavior of
the system characterized by the exponentsa andz are those
obtained in the case of uncorrelated noise. There may be,
however, situations in which the decay of correlations in the
noise is algebraic.

Indeed, in some experimental situations the measured
scaling exponents are larger than the values predicted by
KPZ [1,4]. A possible explanation of such a departure from
KPZ behavior may be long-range correlations in the noise.
Such experimental results serve as a motivation for the study
of systems with correlated noise in spite of the fact that di-
rect evidence for long-range correlations in the noise is usu-
ally lacking.

Many studies of growth models with noise that is algebra-
ically correlated in space but uncorrelated in time described
by

khsrW,tdl = 0 s3d

and

khsrW,tdhsrW8,tdl = 2D0urW − rW8u2r−ddst − t8d s4d

have been published in the last decade. These include dis-
crete one-dimensional models[ballistic deposition (BD)
[5–7], solid-on-solid(SOS) [7,8], and direct(discrete) inte-
gration of the KPZ equation[5]]. Many researchers studied
the KPZ equation with such noise[9–16] and obtained dif-
ferent predictions. In spite of the differences in the predicted
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values of the critical exponents, a common picture seems to
result from all methods, namely: for smallr’s the critical
exponents are the same as for the case of uncorrelated noise.
Then, forr’s above a certain critical valuerc the exponents
becomer dependent.

In sharp contrast to the variety of numerical results and
theoretical predictions for the critical exponents of the KPZ
equation with spatially correlated noise, only few results are
available for the KPZ equation with temporally correlated
noise — not to mention noise that is both spatially and tem-
porally correlated. Similar to Eqs.(3) and (4), temporally
correlated noise with zero mean can be described by

khsrW,tdhsrW8,tdl = 2D0srW − rW8dut − t8u2f−1, s5d

wheref characterizes the decay of the correlations over time
(it is assumed thatf,1/2 or otherwise the correlations does
not decay, but rather increases with time).

The first theoretical prediction of the critical exponents of
KPZ in the presence of this type of noise is due to Medinaet
al. [13] that used dynamic renormalization group(DRG)
analysis to study this problem. They solved the DRG equa-
tions numerically in one dimension, for the case whereD0 is
a short-range function, and found out, just like for spatially
correlated noise, that for small enoughf’s the correlations
are irrelevant. They claim that forf.0.167 the correlations
become relevant, and the roughness exponent can be fitted
numerically by

aDRGsfd = 1.69f + 0.22. s6d

The dynamic exponent can then be obtained using the scal-
ing relation

zDRGsfd =
2aDRGsfd + 1

1 + 2f
. s7d

These predictions have been checked numerically by Lam
et al. [17] using the ballistic deposition model. They found
sensible agreement between the DRG prediction and the nu-
merical values they obtained. However, substantial devia-
tions were found, centered around the expected threshold
point f0=0.167. Thus, the authors believe that these discrep-
ancies are due to a crossover effect in the simulation and not
due to any approximation in the DRG calculation.

Apart from the above mentioned DRG result, there is only
one more result for KPZ with temporally correlated noise
proposed by Ma and Ma[18] who used a Flory-like scaling
approach(SA), originally suggested in the white-noise KPZ
context, by Hentschel and Family[13]. Ma and Ma obtained
the following strong-coupling roughness exponent:

aSAsfd =
2 + 4f

2f + d + 3
, s8d

and the following dynamic exponent

zSAsfd =
2d + 4

2f + d + 3
. s9d

These values are said to describe the strong-coupling scaling
exponents for all values of the parameterf, and for every
dimensiond. Actually, it is easily verified that these expres-

sions reduce to the well-known white-noise KPZ results in
one dimension whenf=0.

This prediction for the critical exponents is obviously dif-
ferent from the previous one-dimensional DRG result in two
respects. First, Ma and Ma do not predict that for small
enoughf’s the temporal correlations are irrelevant, so obvi-
ously they rule out the threshold value off, f0. Second, for
f.0.167 the two approaches yield different numerical val-
ues for the scaling exponents.

This situation, where only two theoretical predictions are
available for the KPZ problem in the presence of temporally
correlated noise, especially when one of them(DRG) is a
one-dimensional result, certainly calls for a clarification of
this issue. This problem is further complicated by the fact
that only one numerical study[17], and only in one dimen-
sion, is available.

At this point it is interesting to mention another result for
the KPZ equation in the presence of noise with special mixed
spatiotemporal correlations[nonseparable noise correlator
Dsq,vd]. This is a case where in contrast to systems where
the noise is only suspected to be of long range, here long-
range correlations in the noise follow from direct physical
arguments. This problem has been studied both numerically
and analytically by Liet al. [19] with good agreement be-
tween the analytical and numerical values. Since we deal
with this problem in Sec. VI we will not discuss it further
now.

In this paper we develop a self-consistent approach to
deal with nonlinear Langevin equations, such as KPZ, with
temporally correlated noise. Actually, as will be seen in Sec.
VI, this approach can be easily generalized to spatiotempo-
rally correlated noise. We begin with a brief derivation of the
scaling exponents of the linear theory(also known as the
Edwards-Wilkinson equation) in the presence of temporally
correlated noise. Then, the full time-dependent two-point
function for the linear problem is derived. This result will
serve as a reference for the more general nonlinear discus-
sion. In Sec. III concepts emanating from a previous self-
consistent Fokker-Planck expansion to the KPZ equation are
reviewed. In Sec. IV the time-dependant self-consistent ap-
proach is established. It is shown that analysis of the time-
dependant self-consistent equation in the limit of short times
and long times yields two static equations that are an inter-
esting generalization of the former self-consistent Fokker-
Planck expansion.

In Sec. V a detailed asymptotic solution of the self-
consistent equations is obtained. In this section, we derive
the different possible phases and their corresponding scaling
exponents. Special attention is given to the results in one
dimension. Section VI generalizes the previous results to the
case of noise with arbitrary spatiotemporal correlations, and
two elaborated examples are given. At the end, in Sec. VII a
brief summary of the results obtained in this paper is pre-
sented.

II. THE LINEAR THEORY: THE EDWARDS-WILKINSON
EQUATION

At the beginning of this paper we would like to discuss
first the linear theory(i.e., the KPZ equation with its cou-
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pling constant set to zero,l=0), namely the Edwards-
Wilkinson (EW) equation[20], with temporally correlated
noise. The Edwards-Wilkinson equation is

] h

] t
srW,td = n¹2h + hsrW,td. s10d

As mentioned above, in this paper we discuss temporally
correlated noise characterized by

khsrW,tdhsrW8,t8dl = 2D0dsrW − rW8dut − t8u2f−1, s11d

where the case of uncorrelated noise corresponds to the limit
f=0.

The interface that grows under these conditions is known
to be self-affine, which means that if the spatial coordinates
are scaled by a factor ofb (i.e., rW→ rW8=brW) then if we per-
form the transformationst→ t8=bzt and h→h8=bah (with
the appropriate scaling exponentsa—the roughness expo-
nent, andz—the dynamic exponent) as well, the statistical
properties of the surface are left invariant. Since the growth
equation(10) is linear, following Ref.[1] it is possible to
extract the scaling exponents by scalingrW ,t, and h in the
equation according to the above-mentioned transformation.
But first, we have to realize that under this transformation the
noise term scales likeh→h8=bfzs2f−1d−dg/2h (see Ref.[1]).
Using this we can plug it back into the EW equation and we
get

ba−z] h8

] t8
srW8,t8d = ba−2n¹82h8 + bfzs2f−1d−dg/2h8srW8,t8d.

s12d

Now, imposing the requirement that Eq.(10) remains invari-
ant under this scaling transformation, namely, requiring that
both equations[Eqs. (10) and (12)] should be exactly the
same, we get

z= 2 and a = s4f + 2 −dd/2. s13d

(This gives the roughness exponent as long as the resultinga
is positive, otherwise the surface is flat). It is easily seen that
this result reduces to the standard EW exponents(i.e., for the
EW equation with uncorrelated noise) in the limit of f=0.

This simple result shows that temporally correlated noise
tends to make the surface rougher(a bigger roughness expo-
nenta implies a rougher surface).

The information extracted so far regrading the EW equa-
tion in the presence of temporally correlated noise could
have been satisfactory. However, because we are interested
in obtaining the exponents of the nonlinear theory as well,
we would like to gain as much insight into the behavior of
the linear problem, so that it might help us when dealing
with the KPZ nonlinearity. For example, because of the lin-
ear character of Eq.(10), we can obtain the scaling form(and
recover the exponents) by solving the growth equation ex-
actly. Fourier transforming, Eq.(10), in space and time we
obtain

hqv =
hqv

iv + nq2 , s14d

wherehqv is the Fourier transform ofhsrW ,td. Thus, using the
Fourier transform of Eq.(11), we obtain the dynamical struc-
ture factor(or the two-point correlation function)

Fqv = khqvh−q,−vl = 2D0
v−2f

v2 + n2q4 . s15d

By Fourier transforming back we get

Fqstd = khqs0dh−qstdl =
D0

n1+2fcosspfd
q−2−4ffEWsnq2td.

s16d

Here fEWsud is a scaling function that can be written explic-
itly as

fEWsud =
cosspfd

p
E

−`

` y−2f

y2 + 1
eiyudy

= coshsud −
u1+2f

Gs2 + 2fd 1F21* 1

f + 1,f +
3

2
*u2

4 2 . s17d

where Gsxd is just Euler’s Gamma function, and1F2 is a
generalized hypergeometric function. The functionfEWsud is
also plotted in Fig. 1. As can be seen in the figure, the scaling
function behaves like a constant for smallu’s (this corre-
sponds to short times, that is fornq2t!1). At the other ex-
treme, i.e., for largeu’s, this function decays algebraically. In
order to be sure of this power-law tail, and to obtain its exact
shape we calculated the leading behaviors for small and large
u’s and obtained

FIG. 1. The scaling functionfEWsud (f=1/4 wastaken for this
illustration). One can see an exponential-like decay for smallu’s,
and a power-law decay for largeu’s.
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fEWsud , 51 −
1

Gs2f + 2d
u1+2f + ¯ , u ! 1

u2f−1

Gs2fd
11 +

4s1 − fdS1

2
− fD

u2 + ¯2 ,
u @ 1

s18d

so thatfEWsud,u−s1−2fd for largeu’s.
Naturally, the scaling exponents can be recovered easily

from Fqstd. SinceFqstd depends on time only through the
combinationnq2t we identify the dynamic exponent as the
power ofq in this scaling form, so that herez=2. In addition,
it can be seen that for smallq’s, Fqstd,q−2−4f. Thus we
identify the exponentG=2+4f that can be translated into
the roughness exponent via the relationa=sG−dd /2 [see Eq.
(46) below], so that we recovera=s4f+2−dd /2.

The results obtained in this section will serve us later.
First, it might be interesting to compare these results with the
results obtained for the nonlinear theory(for example, in the
weak-coupling regime of the KPZ equation). Second, we
will use the scaling function of the linear theory as an ansatz
for the integral equation that will determine the scaling ex-
ponents of the strong-coupling phase of the nonlinear theory.

III. NONLINEAR THEORY: THE KPZ EQUATION

We proceed now to the much harder nonlinear case that
poses many technical difficulties already in the uncorrelated
case.

The method we present in the following section is based
on the same general ideas as the self-consistent expansion
(SCE) used for systems with noise that is uncorrelated in
time [9,25,26]. Namely, an expansion around an optimal lin-
ear system. The SCE is based on constructing a Fokker-
Planck equation for the probability distribution of the height
function. This step is based on the fact that the noise is not
correlated in time. The self-consistent expansion is formu-
lated in terms of the steady-state structure factor(or two-
point function), fq=khqh−qlS and its corresponding steady-
state decay rate that describes the rate of decay of a
disturbance of wave vectorqW in steady state, namely

vq
−1 =

E
0

`

khqstdh−qs0dldt

khqh−qlS
. s19d

The linear model around which the expansion is con-
structed is chosen to yield the(unknown) fq and vq that
appear in it as parameters. An evaluation offq andvq as an
expansion around that linear model leads to the coupled
equations

fq = fq + cqhfp,vpj, s20d

and

vq = vq + dqhfp,vpj. s21d

Within this framework, the structure factor and decay rate
are obtained by solving the coupled nonlinear integral equa-

tions cqhfp,vpj=0 and dqhfp,vpj=0. In contrast to other
expansions, the full correction, in a given order of the expan-
sion, of the relevant physical quantities, is really small. In
fact, it is chosen to be zero.

IV. DERIVATION OF THE TIME-DEPENDENT
SELF-CONSISTENT APPROACH

In this work (following Ref. [22]) we obtain the dynami-
cal structure factorFqstd=khqs0dh−qstdls, using the same idea
of a self-consistent expansion. Here too, the averagek¯ls

denotes steady-state averaging, wherehqs0d is measured in
steady state at timet=0 and thenh−qstd is measured at some
later time t (also in steady state). The dynamical structure
factor Fqstd normalized byfq=Fqs0d (i.e., the static struc-
ture factor) is thus a measure of the persistence in steady
state of disturbances with wave vectorqW. Because the noise
is correlated in time, we cannot use the Fokker-Planck ap-
proach, but as seen in Refs.[22,23] such a Langevin ap-
proach lends itself as an alternative to the Fokker-Planck
approach even when the latter is available.

Our starting point is the field equation forhqv [the Fourier
transform in time and space ofhsrW ,td] obtained by Fourier
transforming Eq.(1)

ivhqv + nqhqv + o
,,s,m,t

Cq,mh,shmt = hqv, s22d

where nq=nq2, Cq,m=s1/ÎTds1/ÎVd,W ·mW dq,,+mdv,s+t, T be-
ing an assumed periodicity in time to be taken eventually to
infinity, V is the volume of the system(to be taken to infinity
as well), and the noise correlations arekhqvh−q−vl
=2D0sqdv−2f. [Note, that in thed+1 dimensional space(in-
cluding time), the noise is quenched disorder!] In the
Chapman-Enskog spirit(as done in Refs.[21,22]) the equa-
tion is written in the form

fsiv + vqdhqv − hqv
0 g + lF o

,,s,m,t
Cq,mh,shmt − hqv

1 G
+ l2fsnq − vqdhqvg = 0, s23d

wherel is going to be taken as 1 but is used at present as an
indicator to show the construction of the perturbation expan-
sion as an expansion inl. The noise is split into two terms
hqv=hqv

0 +hqv
1 such thatkhqv

0 h−q−v
0 l=Dqv and the correct

Fqv [i.e., the Fourier transform in time of the “dynamical
structure factor”Fqstd] is given byFqv=Dqv / sv2+vq

2d. This
choice implies that ignoring thel andl2 terms in Eq.(23),
we still obtain from a linear equation the correctFqv. In
contrast to the case of short-range correlated noise wherevq
is defined by Eq.(19), we must employ here a more general
definition. The reason is that the power law found to describe
the tail of Fqstd for long times renders the expression on the
right-hand side of Eq.(19) infinite. Therefore, our definition
of vq is based on the assumption of a scaling form ofFqstd
— namely

Fqstd = fqfsvqtd. s24d

[It can be easily verified that the dynamical structure factor
of the linear theory given by Eq.(16) indeed obeys this scal-
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ing law.] The “decay rate”vq is defined as that parameter
that will make Eq.(24) a good approximation for smallq’s
and over the whole time range.

Now, Eq. (23) enables to obtainhqv explicitly to second
order inl. The expression forhqv is multiplied into its com-
plex conjugate and only terms up to second order inl are
retained. At the end the expressions are averaged over the
noisehqv and we get

sv2 + vq
2dFqv = Dqv + 2l2 o

,,m,s,t
Cq,mCq−,−mF,sFmt

+ l2f2D0sqdv−2f − Dqvg

− 2l2snq − vqdvqFqv

+ 4l2 o
,,m,s,t

Cq,mC,q−mFqvFmt

− iv + vq

is + v,

+ 4l2 o
,,m,s,t

Cq−,−mC,−qmFmtFqv

3
iv + vq

− is + v,

. s25d

Now l is set to be 1. The result is an equation of the form
Fqv=Fqv+ehF,sj. EquatingehF,sj to zero yields

fv2 + vq
2 + 2snq − vqdvqgFqv − 2 o

,,s,m,t
uCq,mu2F,sFmt

+ 4 o
,,s,m,t

Cq,mC,qmFqvFmtF− iv + vq

is + v,

+
iv + vq

− is + v,
G

= 2D0sqdv−2f. s26d

We divide the last equation bysv2+vq
2d and using the defi-

nition Cq,m=A,,q−,dq,,+m/ÎVT (as well as lettingV and T
tend to infinity) we obtain

F1 + 2
snq − vqdvq

v2 + vq
2 GFqv

− 2E dd,

s2pdd

ds

2p

uA,,q−,u2F,sFq−,,v−s

v2 + vq
2

+ 4E dd,

s2pdd

ds

2p
A,,q−,Aq,q−,F FqvFq−,,v−s

fiv + vqgfis + v,g

+
FqvFq−,,v−s

f− is + v,gf− iv + vqgG
=

v−2f

v2 + vq
22D0sqd. s27d

The last equation is the basic equation for our following
discussion. We consider first the smallv behavior (more
specificallyv /vq!1) that corresponds to the long-time de-
cay of the time-dependent structure factor.

A. Long-time decay of the structure factor

The first smallv simplification is obtained by neglecting
v /vq. This yields

F1 + 2
snq − vqdvq

vq
2 GFqv

− 2
1

vq
2 E dd,

s2pdd

ds

2p
uA,,q−,u2F,sFq−,,v−s

+ 8
Fqv

vq
E dd,

s2pdd

ds

2p
A,,q−,Aq,q−,

v,

s2 + v,
2Fq−,,v−s

=
2D0sqd

vq
2 v−2f. s28d

Fourier transforming back from frequency domainv to real
time t, we obtain

F1 + 2
snq − vqdvq

vq
2 GFqstd

−
2

vq
2 E dd,

s2pdduA,,q−,u2F,stdFq−,std

+
8

vq
E dd,

s2pddA,,q−,Aq,q−,

3E
−`

`

dt8e−v,ut8uFq−,st8dFqst − t8d

=
D0sqd

Gs2fdcosspfdvq
2t−s1−2fd, s29d

where on the right-hand side we have written only the lead-
ing large-t behavior.

This result suggests that in the long-time limit, the time-
dependent two-point function has an algebraic decay of the
general form

Fqstd , A`fqsvqtd−g, s30d

whereA` is a numerical constant,fq is the steady-state two-
point function, andg is an exponent that will be determined
later.

Equipped with the last result we can see that the first
integral on the left-hand side of Eq.(29) is negligible com-
pared to the other terms on that side in the long-time limit.
The reason is that this integral decays ast−2g, while the other
terms decay ast−g, making that integral subdominant for
large t’s.

Next, using this simplification as well as the scaling form
(24), we analyze Eq.(29) for smallq’s (i.e., in the large scale
limit ) in the spirit of Refs.[9,25]. In order to achieve that, we
break up the integral into the sum of two contributions cor-

responding to domains of,W integration, with high and low
momentum. When performing this under the assumption of
long times(i.e., vqt@1) we obtain the following equation:
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2nq − vq

vq
fqfsvqtd −

8

s2pdd

fq

vq
fsvqtdFD̂1q

2

+Eq0

dd,A,,q−,Aq,,−q
fq−,

vq−,

F1Shfj,
v,

vq−,
DG

=
D0sqdsvqd−1−2f

A`Gs2fdcosspfd
svqtd2f−1, s31d

where f, inside the curly brackets, is just the scaling func-

tion, q0 is the upper cut-off of the smallu,W u region, andD̂1 is

a constant that comes from the contribution of the largeu,W u
region of the first integral(see Ref.[25] Sec. VI, where such
an estimation of the contribution of large momenta is also
employed). In addition, we used the following notation for
the integralF1:

F1Shfj,
v,

vq−,
D =E

0

`

e−sv,/vq−,dxfsxddx. s32d

We conclude thatFqstd,A`fqsvqtd−s1−2fd (i.e., g=1
−2f). And Eq. (31) can be rewritten as a time-independent
equation relating thef’s and thev’s

A`fq

vq
F2nq + D1q

2 − vq

+
8

s2pddEq0

dd,A,,q−,Aq,q−,

fq−,

vq−,

F1Shfj,
v,

vq−,
DG

=
D0sqdsvqd−1−2f

Gs2fdcosspfd
. s33d

It is interesting to compare the result above forFqstd with
the decay in the case where the noise is not correlated in time
(namely, whenf=0) [22,24]. In that case the long-time be-
havior of Fqstd is given by

Fqstd ~ svqtdsd−1d/2zexpf− svqtds1/zdg s34d

(i.e., a stretched exponential).
The limit asf tends to zero ofFqstd should yield a short-

range decay. The expression in Eq.(30) (given thatg=2f
−1) tends to a function that scales ast−1. This should be
viewed as a function that scales asdstd at large t’s, or a
short-range function. Actually, a direct inspection on the
right-hand side of Eq.(29) recovers this. Since the denomi-
nator of the right-hand side contains theG function, the
whole expression vanish asf tends to zero. Checking more
carefully, forf=0 the right-hand side of Eq.(29) is propor-
tional to expf−vqtg. If we try now a solution Fqstd
~expf−vqtg we find that it does not work. The reason for
that and how to obtain the correct asymptotic behavior[Eq.
(34)] is detailed in Ref.[22].

To complete the picture given so far, that is, after finding
the power law that governs the structure factor, we need to
know the steady-state structure factorfq and its associated
“decay rate”vq that will characterize the short-time decay as
well.

B. Steady-state properties

In this part we obtain another equation, which together
with Eq. (33) forms a complete set of coupled equations that
will yield the smallq dependence offq andvq. In order to
achieve this we would like to discuss Eq.(27) in the limit of
short times as well. Here, it is more convenient to treat the
time-dependent equation directly, so we Fourier transform,
Eq. (27), to yield

Fqstd + snq − vqdE
−`

`

dt8e−vqut8uFqst − t8d

−
2

s2pdd E dd,uA,,q−,u2E
−`

`

dt8
e−vqut8u

2vq

3Fq−,st − t8dF,st − t8d

+
4

s2pdd E dd,A,,q−,Aq,q−,HE
0

`

dt8E
0

`

dt9e−v,t8−vqt9

3Fq−,st8dFqst − t8 − t9d

+E
−`

0

dt8E
−`

0

dt9ev,t8+vqt9Fq−,st8dFqst − t8 − t9dJ
=

D0sqd
p

E
−`

` v−2feivt

v2 + vq
2 dv. s35d

Settingt=0 and following the same steps described above

for long times(i.e., breaking the,W integration into large and

small u,W u regions, and discussing the smallq behavior of
each) gives the following short-time evaluation of Eq.(35)

nqfq +
8

s2pddfqFÊ1q
2

+Eq0

dd,
A,,q−,Aq,q−,

v,

fq−,F2Shfj,
vq−,

v,

,
vq

v,
DG

−
2

s2pddF 1

vq
Eq0

dd,uA,,q−,u2fq−,f,F3Shfj,
vq−,

vq
,
v,

vq
D

+ Ê2 +
Ê3

vq
4f−1G

=
D0sqd

cosspfd
svqd−2f, s36d

where as beforeÊ1, Ê2, and Ê3 are (renormalization) con-
stants. In addition, we used the following notations:

F2Shfj,
vq−,

v,

,
vq

v,
D =E

0

`

dxE
0

`

dye−x−y

3fSvq−,

v,

xD fSvq

v,

x + yD , s37d

and

F3Shfj,
vq−,

vq
,
v,

vq
D =E

0

`

e−xfSvq−,

vq
xD fSv,

vq
xDdx. s38d
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Up to this point we obtained two coupled equations forfq
and vq. Note that the equations above depend on the(un-
known) functional form of the scaling functionf. We will
proceed now as far as possible without specifying that form,
to obtain many general results about the exponents. In the
actual numerical calculation of the exponents we will resort
to an approximate form off to be described later.

We would like now to solve Eqs.(33) and(36) in the limit
of small q’s. For convenience we rewrite these equations
using the explicit form ofA,,m as

fqfs2n + D1dq2 − vq + J,sqdg =
D0sqdsvqd−2f

A`cosspfdGs2fd
,

s39d

and

sn + E1dq2fq + I1
,sqdfq − I2

,sqd − E2 −
E3

vq
4f−1

=
D0sqdsvqd−2f

cosspfd
, s40d

where

J,sqd =
8l2

s2pddEq0

dd,
f,W · sqW − ,WdgfqW · sqW − ,Wdg

vq−,

fq−,

3F1Shfj,
v,

vq−,
D , s41d

I1
,sqd =

8l2

s2pddEq0

dd,
f,W · sqW − ,WdgfqW · sqW − ,Wdg

v,

3fq−,F2Shfj,
vq−,

v,

,
vq

v,
D , s42d

and

I2
,sqd =

2l2

s2pddEq0

dd,
f,W · sqW − ,Wdg2

vq
fq−,f,F3Shfj,

vq−,

v,

,
vq

v,
D .

s43d

Note that the integrals in Eqs.(41)–(43) are cut byq0. q0 is
chosen in such a way that below itfq andvq are expected to
be power laws inq,

fq = Aq−G, s44d

and

vq = Bqz, s45d

where z is the dynamic exponent, andG is related to the
roughness exponenta by

a = sG − dd/2. s46d

As mentioned above, the integrals in Eqs.(41)–(43) are
cut byq0, and therefore we can readily use these power laws
inside the integrals. Using the power laws we can also re-
write Eqs.(39) and (40) as

Aq−Gfs2n + D1dq2 − Bqz + J,sqdg =
D0sqdsBqzd−2f

A`cosspfdGs2fd
,

s47d

and

Asn + E1dq2−G + I1
,sqdAq−G − I2

,sqd − E2 =
D0sqdsBqzd−2f

cosspfd
,

s48d

where we have neglected theE3 term in Eq. (40) as it is
negligible compared to the left-hand side in the limit of small
q’s (sincef,1/2).

It is interesting to note that these equations are a non-
trivial generalization of the SCE method developed in Refs.
[25,26]. More specifically, if we take the limit off→0, and
plug in fsud=e−u, which is the scaling function of the linear
theory whenf=0, both equations[i.e., Eqs.(47) and (48)]
reduce to the equations obtained using SCE. It is a surprise
to find this similarity because the self-consistent expansion
was originally derived using the Fokker-Planck equation as-
sociated with the Langevin-like KPZ equation, while the
derivation given here deals directly with the Langevin form.
Once we realized this surprising similarity, it is only natural
to follow the asymptotic solution that is used in the well-
established SCE literature, and is detailed for example in
Ref. [25].

V. DETAILED ASYMPTOTIC SOLUTION

As mentioned above, in performing the asymptotic solu-
tion of the self-consistent equations, we follow previous
work. We also focus here, for simplicity, on the case of noise
without spatial correlations[i.e., D0sqd=D0]. However, Eqs.
(47) and (48) are valid for any spatial correlations of the
noise[i.e., for anyD0sqd], and the more general case is post-
poned to the following section.

The first step in the asymptotic solution is to evaluate the
integralsI1

,sqd, I2
,sqd, andJ,sqd using the power laws given

in Eqs.(44) and (45)

I1
,sqd,J,sqd ~ Hq2 for d + 2 −G − z. 0

qd+2−G−z for d + 2 −G − z, 0,
s49d

I2
,sqd ~ Hconst for d + 4 − 2G − 2zs1 − 2fd . 0

qd+4−2G−z for d + 4 − 2G − 2zs1 − 2fd , 0.

s50d

We consider now the upper-right quadrant of thesG ,zd
plane, where a solution may be expected. The linesd+2
−G−z=0 and d+4−2G−2zs1−2fd=0 divide the quadrant
into four sectors. We investigate next each sector separately
to decide whether a solution of the Eqs.(47) and (48) can
exist there or not(in the limit of smallq’s).

Sector a is defined by d+2−G−z.0 and d+4−2G
−2zs1−2fd.0. In this sector Eqs.(47) and (48) reduce to
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Aq−Gfs2n + D1 + D2dq2 − Bqzg =
D0B

−2f

A`cosspfdGs2fd
q−2fz,

s51d

and

Asn + E1 + E4dq2−G − E5 − E2 =
D0B

−2f

cosspfd
q−2fz. s52d

First, the possibility that 2−G.−2zf can be ruled out
immediately, becauseB is positive, so that Eq.(51) cannot be
balanced in leading order(in powers ofq). If 2−G,−2zf
then the right-hand side of Eq.(51) is negligible compared to
the left-hand side, so that the leading order equations are
identical to those obtained for the white-noise KPZ problem
and thus the standard KPZ results from Refs.[9,25] are re-
stored. Therefore, we getG=2 andz=2. SinceG=2 andz
must be positive, the condition 2−G,−2zf can be met only
for fø0. Namely, for the case of noise anticorrelated in
time [27]. Such a solution holds only ford.4s1−2fd.

The other relevant option is 2−G=−2zf. This implies that
f must be positive,G.2 andzù2. There is now an inter-
esting difference between the casez.2 andz=2. Forz.2,
the leading order terms in Eqs.(51) and (52) lead to two
linear homogeneous equations in the quantitiesA andB−2f.
This implies that in order to have a physical solution with
A,B.0, we must have the determinant of the coefficient
matrix vanish, namely,

Gs2fdA`s2n + D1 + D2d = sn + E1 + E4d. s53d

Since the quantitiesD1,D2,E1,E2 depend on the behavior
of f, and v, for ,.q0, on the total upper cutoff etc., it is
difficult to envisage that Eq.(53) can be fulfilled other than
accidentally for nongeneric values of the parameters of the
system. The case withz=2 is different. The two equations
for the coefficientsA andB have now an additional term—
AB on the right-hand side of the first equation. This enables
now a generic solution for the coefficients. In that caseG
=2+4f. Considering the defining conditions for the sector
we find that within the sector such a solution is possible only
for d.4.

Sector b is defined by d+2−G−z.0 and d+4−2G
−2zs1−2fd,0. In this sector Eq.(52) is replaced by

Asn + E1 + E4dq2−G − E6q
d+4−2G−z − E2 =

D0B
−2f

cosspfd
q−2fz,

s54d

while Eq. (51) remains intact.
The analysis for the possibility 2−G=−2zf in sectorb is

similar to the above analysis for sectora. The only differ-
ence is that due to the different defining conditions of the
sector, such a solution withz=2 andG=2+4f holds within
the sector for 2+4f,d,4.

Combining the results for sectorsa andb, we see that for
fø0 the noise term is irrelevant, and the critical exponents
that describe the EW problem with uncorrelated noise
(namely G=z=2) are restored. This option is possible if
d.2. In addition, forf.0 we get the new solutionz=2 and

G=2+4f that is just the solution obtained for the EW equa-
tion with temporally correlated noise[see Eq.(13) above].
Following the above discussion it is realized that this solu-
tion is possible only ford.2+4f. Therefore, the lower criti-
cal dimension in this problem isdc=2+4f (providedf.0,
otherwisedc=2 as mentioned above).

Sector g is defined by d+2−G−z,0 and d+4−2G
−2zs1−2fd.0. In this sector Eq.(52) is replaced by

Asn + E1dq2−G + AE7q
d+4−2G−z − E5 − E2 =

D0B
−2f

cosspfd
q−2fz.

s55d

First, the two defining conditions of this sector imply that
the first term on the left-hand side is negligible compared to
the second term, and the second term is negligible compared
to the term on the right-hand side of the equation. Therefore,
looking at the simplified equation, we must conclude that
f=0 and −E5−E2=D0B

−2f /cosspfd. However, this is im-
possible because the left-hand side is negative definite.

Sector d is defined by d+2−G−z,0 and d+4−2G
−2zs1−2fd,0. In this sector Eqs.(47) and (48) take the
form

Aq−GFs2n + D1dq2 − Bqz +
8l2

s2pdd

A

B
qd+4−G−zGshfj,G,zdG

=
D0B

−2f

A`cosspfdGs2fd
q−2fz s56d

and

Asn + E1dq2−G −
2l2

s2pdd

A2

B
qd+4−2G−zFshfj,G,zd − E2

=
D0B

−2f

cosspfd
q−2fz, s57d

whereGshfj ,G ,zd is given by

Gshfj,G,zd =E ddt
ftW · sê− tWdgfê · sê− tWdg

uê− tWuz

3uê− tWu−GF1Shfj,
tz

uê− tWuz
D , s58d

andFshfj ,G ,zd given by

Fshfj,G,zd = − 4E ddt
ftW · sê− tWdgfê · sê− tWdg

tz

3uê− tWu−GF2Shfj,
uê− tWuz

tz
,
1

tz
D +E ddtftW · sê− tWdg2

3uê− tWu−Gt−GF3shfj,uê− tWuz,tzd. s59d

ê is a unit vector in an arbitrary direction, and thetW integra-
tion is over alld-dimensional space.

From the defining conditions of this sector, it is possible
to neglect theq2 term in the brackets on the left-hand side of
Eq. (56) compared to the thirdqd+4−G−z term (sinced+4−G
−z,2). In addition, it is also possible to neglect theq2−G
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term on the left-hand side of Eq.(57) compared to the sec-
ond qd+4−2G−z term (sinced+4−2G−z,2−G). It is easy to
see that forf,0 all the usual KPZ results are trivially re-
tained, as the right-hand side is irrelevant then. Therefore, we
focus on the casef.0 and thus the constant term on Eq.
(57) can be neglected compared to the noise term on the
right-hand side.

Now there are two options: First, whenG.zs1+2fd then
the right-hand side of both Eqs.(56) and (57) is negligible
compared to the left-hand side. In that case the critical expo-
nents are determined by a combination of the scaling relation
d+4−G−2z=0, and the equation

Ffhfj,G,zsGdg = 0, s60d

[whereF is given by Eq.(59) above]. We denote the solu-
tions of the transcendental equation byGfsdd (since the ex-
ponentG is dependent on the spatial dimensiond and onf).
For example, in one dimension, and forf=0 it can be shown
analytically thatG0s1d=2 and in two dimensions a numerical
solution of the equation(again forf=0) yields G0s2d=2.59
(see Refs.[9,25]). A discussion for generalf’s will be given
below. Still, we must remember that a solution here is ob-
tained by requiringG.zs1+2fd. This yields a necessary
condition for the existence of such a solution,f, f3Gfsdd
−d−4g /2fd+4−Gfsddg.

The second option in this sector isG=zs1+2fd [the pos-
sibility G,zs1+2fd is irrelevant because one cannot bal-
ance the equations and still be consistent with the defining
conditions of sectord in that situation]. Then in order to
balance Eqs.(56) and (57) we must also haved+4−2G−z
=−2zf. This leads to the new solutionz=sd+4d / s3+2fd
and G=sd+4ds1+2fd / s3+2fd. However, this solution is
valid only if Eq. (60) does not yield exponents(namely,Gf

and zf) that make theqd+4−2G−z term in Eq.(57) dominant.
Not surprisingly, this requirement translates into the condi-
tion f. f3Gfsdd−d−4g /2fd+4−Gfsddg—implying either a
smooth transition between the two types of solutions or a
complete domination of the first option[i.e., Gfsdd]. Actu-
ally, the existence of this new solution also requires
Ffhfj ,G ,zsGdg,0. This requirement turns out to be the same
as Gfsdd,Gnew=sd+4ds1+2fd / s3+2fd, so that this extra
requirement is fulfilled automatically sinceG=zs1+2fd.

To summarize the results of sectord, we found two pos-
sible strong-coupling solutions. The first solution is obtained
from Eq. (60), and its scaling exponents are denoted by
Gfsdd and zfsdd (this solution reduces to the standard KPZ
results whenf=0). The second solution is given by the ex-
plicit expressions G=sd+4ds1+2fd / s3+2fd, and z=sd
+4d / s3+2fd. Then, in a given dimensiond and for a given
f, the actual strong-coupling exponents of the KPZ problem
with temporally correlated noise are justG=maxhGfsdd ,sd
+4ds1+2fd / s3+2fdj and its correspondingz. Thus, the
transition between the two solutions as a function off (if
such a transition exists) is continuous. However, it should be
emphasized that for a specificf one of these solutions domi-
nates so there is no phase transition between them.

Based on the results of the linear theory(13) and the
numerical simulation[17] we expect the exponentG to be a

nondecreasing function off (that means that the inclusion of
temporal correlations does not make the surface smoother).
This implies thatGfsddùG0sdd, and since we knowG0sdd
from the white-noise KPZ problem it is easy to determine a
lower bound onf, denoted byfcsdd, such that the new so-
lution G=sd+4ds1+2fd / s3+2fd is not possible below it.
The specific value offcsdd is fcsdd=f3G0sdd−d−4g /2fd
+4−G0sddg. The fact thatGfsdd is nondecreasing as a func-
tion of f implies two possible options. Either the expression
Gfsdd gives the strong-coupling solution for the whole range
of 0,f,1/2, or it is the solution for smallf and crosses
over toG=sd+4ds1+2fd / s3+2fd. Such a crossover can oc-
cur only abovefcsdd.

We turn now to the actual evaluation of the exponents. To
do that we need an ansatz for the scaling functionf on which
the form of the equations forG and z depend. Since the
equations were constructed in such a way that second-order
corrections to the quantitiesfq andvq vanish, we use as in
Refs.[22,23], the zero-order form of the scaling function in
evaluating these corrections. The scaling function in zero
order is the function obtained for the corresponding linear
theory, given by Eq.(17). We therefore simplify Eq.(60)
using this ansatz. First, one quantity can be evaluated exactly

F1shfEWj,ad =E
0

`

e−axfEWsxddx=
a − a−2f

a2 − 1
. s61d

In addition, the functionalF2 can be simplified so that it
involves only one-dimensional integration(instead of double
integration)

F2shfEWj,a,bd =E
0

`

dxE
0

`

dye−x−yfEWsaxdfEWsbx+ yd

=
cosspfd

p
E

−`

`

du
uuu−2f

u2 + 1

1

1 − iu

3
a1+2fs1 − ibud−2f − s1 − ibud

fa2 − s1 − ibud2g
s62d

(note that the integral is real, as it should be, even though the
integrand is complex).

In order to illustrate the outcome of this analysis we spe-
cialize to one dimension. First, in one dimension only strong-
coupling solutions are possible as the critical dimension is
2+4f. Second, as mentioned above, in one dimension Eq.
(60) can be solved analytically forf=0 and it givesG0=2.
This corresponds to a roughness exponent ofa0=1/2 [using
Eq. (46)] and to a dynamic exponent ofz0=3/2 [using the
scaling relationzsGd=sd+4−Gd /2]. for higher values off
one has to solve Eq.(60) numerically using the ansatz of the
linear theory. These results are summarized in Fig. 2 as the
solid line. The figure also presents the possible second solu-
tion G=5s1+2fd / s3+2fd [that corresponds toa=s1
+4fd / s3+2fd] and z=5/s3+2fd, and a continuation ofG0

as a dashed line. However, since the this solution is smaller
than Gf, it is practically irrelevant, sinceGf dominates the
whole f range.
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It is particularly interesting to compare this one-
dimensional result to the DRG result that was presented in
the Introduction[10], and plotted for convenience in Fig. 2.
Generally speaking, the two methods disagree on the values
of the critical exponents significantly over most of thef
range. Three substantial differences can be observed between
the two methods. First, using the self-consistent approach we

found no “threshold behavior.” That is, we found a continu-
ous variation of the scaling exponentsa andz as a function
of f over the whole range of possiblef’s, rather than no
variation of these exponents up to a critical value offc and
a quasilinear behavior from that point on.

Second, we found a solution for the exponents for every
f, while the DRG approach found no solution abovef
=0.46 (claiming that no stable surface can grow under the
condition 0.46,f,0.5). Interestingly, the thresholdfc (the
crossover point) that was predicted using DRG ind=1
(namely 0.167) is the same as the lower bound we found
above(fc=1/6 for d=1). Our exact statement was that for
f.1/6 the second strong-coupling KPZ solution becomes
possible in principle(but not in practice). Therefore, the
DRG result might reflect this exact statement.

Third, we found thatz is a decreasing function off, while
the DRG approach predicts an increasing value ofz. The
reason for this difference is not clear, but it might stem from
the definition of the typical decay rate, which was actually
defined using the scaling form(24), rather than a more “tra-
ditional” definition such as Eq.(19). The reason for using
this definition is that the integral over the scaling function
fsud does not converge, because of its power-law tail. Actu-
ally, in the case of the linear theory, where everything can be
calculated exactly, the only possible definition is the one we
used. Now, since the introduction of temporally correlated
noise certainly slows down the relaxations in the system, this
might have caused an artifact of increasingz, because larger
z’s are interpreted as longer relaxation times. However, in
our approach, we do see this slowing down clearly, but it
does not come from a larger dynamic exponentz in an ex-
ponential decaying scaling function, but rather from a very
slowly decaying scaling function, which does not decay ex-
ponentially. Thus, this difference might reflect a better under-
standing of the time-dependent dynamics in such driven sys-
tems.

Comparison of the two theoretical predictions with the
only numerical study of this problem(taken from Ref.[17],
and plotted in Fig. 2) is inconclusive as well. It can be seen
that the numerical simulation predicts a continuous variation
of the scaling exponents withf, rather than threshold behav-
ior, and thus supports our predictions. In addition, when
comparing the actual values of the exponents one can find
good agreement between our results and the simulation for
smallf8s (up tof,1/4). However, for largerf8s the simu-
lation found much larger exponents, and a better numerical
agreement with the DRG prediction. Still, there is some ad-
ditional disagreement between the two, as the simulation
found a stable surface for allf’s while the DRG predicts a
stable surface only up tof=0.46. The last point concerns the
value of the dynamic exponentz for various values off.
Strictly speakingz was not given in Ref.[17], but we recon-
structed it using the well known scaling relationz=a /b that
is valid under very general conditions[it comes from the
Family-Vicsek scaling relation[3]—see Eq.(2)]. The result-
ing z [see Fig. 2] is very confusing. z has no clear
tendency—it just fluctuates aroundz=3/2. Therefore, the
numerical data does not resolve the question of decreasing/
increasingz. Certainly, future numerical results will be of
great interest to clarify these issues.

FIG. 2. (a) The roughness exponentaf, (b) the growth exponent
bf, and(c) the dynamic exponentzf as a function of the exponent
f for decay of temporal correlations ind=1. Note that the dynamic
exponentz was inferred for the numerical results of Ref.[17] from
a and b using the scaling relationz=a /b. Second, note that the
DRG result is possible only up tof=0.46. Third, the dashed line
shows our second possible solution(using SCE) that turns out to be
irrelevant here, since it is smaller than the SCEaf for all f’s.
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The results obtained here are also in conflict with the
result obtained by the scaling approach(SA) [see Eqs.(8)
and (9) above, and Fig. 2]. The whole structure of the solu-
tion is different between these methods, so in spite of a for-
mal similarity between the SA results and the second strong-
coupling result, we found, (both predict nonlinear
dependence onf and give rational expressions for the scal-
ing exponents, where the numerators and the nominators are
linear functions off) there is a big difference between the
predicted scaling exponents. Actually, the numerical study of
this problem (see Ref.[17]) seems to favor our results.
Therefore, the status of the SA result is questioned.

VI. GENERALIZATION TO SPATIOTEMPORALLY
CORRELATED NOISE

Up to this point we discussed the relatively simple case of
noise without any spatial correlations[i.e.,D0sqd=D0]. How-
ever, including spatial correlations bears no principal diffi-
culty to the analysis presented above. For example one can
just replaceD0 with D0sqd=D0q

−2r in Eq. (51) and by fol-
lowing the steps from that point the scaling exponents can be
easily extracted. For the sake of presenting a complete pic-
ture we briefly summarize the results obtained for this case.
First, there is the weak-coupling solution, which is again just
the corresponding EW result for such a noise, given by

z= 2 and G = 2 + 2r + 4f. s63d

The weak-coupling solution is possible ford.2+2r+4f, so
that here the lower critical dimension isdc=2+2r+4f.

Second, there is the strong-coupling solution, given by

z= 5 zfsdd 2r + s1 + 2fdzfsdd , Gfsdd
d + 4 − 2r

3 + 2f
2r + s1 + 2fdzfsdd . Gfsdd

and

G = 5 Gfsdd 2r + s1 + 2fdzfsdd , Gfsdd
sd + 4 − 2rds1 + 2fd

3 + 2f
2r + s1 + 2fdzfsdd . Gfsdd,

s64d

where as before,Gfsdd is the solution of the Eq.(60) and
zfsdd=fd+4−Gfsddg /2.

Furthermore, the method presented above is not restricted
to noise terms that have separable correlators, i.e.,Dsq,vd
=D0sqdv−2f, and can just as well deal with nonseparable
correlators[that is, any functional form ofDsq,vd]. In that
case, the only difference would be to replace the right-hand
side of Eq.(27) by the expressionDsq,vd / sv2+vq

2d with the
requiredDsq,vd inside.

In order to demonstrate this option, we discuss an inter-
esting application of this approach to the KPZ equation with
a very special kind of spatiotemporally correlated noise(this
result was mentioned at the end of the introduction). This
problem was previously solved by Liet al. [19] in the con-
text of vortex lines in the three-dimensionalXY model with

random phase shifts, and it boils down to solving the KPZ
equation in two dimensions(more specifically the 2+1 case)
with a noise term that has the following spatiotemporal cor-
relations:

khsrW,tdhsrW8,t8dl =
ssJmd2

ÎsrW − rW8d2 + st − t8d2
, s65d

whererW is a two-dimensional vector[i.e., rW=sx,ydPR2]. In
order to apply the method presented above for finding the
critical exponents of this model we have to Fourier transform
the noise correlator first

khsqW,vdhsqW8,v8dl = ssJmd2d2sqW + qW8ddsv + v8d
q2 + v2 , s66d

(where qW is a two-dimensional vector) so that Dsq,vd
=D0/ sq2+v2d [with D0;ssJmd2]. Now, for small q’s vq

=Bqz, and we can evaluate the Fourier integral explicitly
(assumingz.1)

E
−`

` eivt

sv2 + vq
2dsv2 + q2d

dv ,
1

vq
3

p

2

e−vqt

q2/vq
2 =

1

q2+z

pe−vqt

2B
.

s67d

As mentioned above, this expression should replace the
right-hand side of Eqs.(29) and (35). One can easily be
convinced that this term is subdominant in the long-time
limit, and therefore drops out of Eq.(33). However, in the
short-time limit this term is not negligible, and therefore
modifies Eq.(36) accordingly.

Following all the required steps from that point on leads
to the resultsG=z+2 andd+4−2z−G=0, so that for the case
we were interested insd=2d we get

z=
4

3
and G =

10

3
, s68d

identical to the analytic result presented in Ref.[19] (a nu-
merical analysis presented there also verifies this result).

VII. SUMMARY AND CONCLUSIONS

In this paper we developed a time-dependent self-
consistent approach to deal with the KPZ equation driven by
a temporally correlated noise. This achievement was made
possible thanks to the observation that there is a time scale
separation between short-time and long-time behavior of the
system. More specifically, it was realized that when tempo-
rally correlated noise is present in the system, then slow
relaxations of various time-dependent quantities should con-
trol the long-time behavior[in this case algebraic decay of
the time-dependent correlation functionFqstd]. In addition, it
was seen that the short-time behavior is influenced by the
long-time behavior and vice versa.

To summarize the results briefly, we found that the KPZ
equation with temporally correlated noise, just like the prob-
lem with white noise, has both a strong-coupling and a weak-
coupling solution. The weak-coupling solution is described
by the scaling exponents of the corresponding linear theory
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(EW equation), and is made possible for dimensions higher
than the lower critical dimensiondc=2+4f [the specific val-
ues for the exponents are given in Eq.(63)]. The strong-
coupling solution, which is relevant also for low dimensions,
is described by scaling exponents that are a result of a com-
petition between two possible solutions. First, there is an
extension of the classical white-noise KPZ solution denoted
by Gfsdd that is derived from an integral equation(60). The
other possible solution is a new strong-coupling solution and
is given in Eq.(64). The actual exponentG that describes the
surface is the maximum between the two options. For small
f’s Gfsdd is the solution but it may(or may not, as in the
one-dimensional case) cross over in a continuous manner to
the second solution. For a detailed discussion and compari-
son to other methods in one dimension see Sec. V.

The problem dealt with in this paper is not a new one, yet
very few results are available in the literature. Therefore, the

result presented here might contribute to the clarification of
this fundamental problem. Since the results of the self-
consistent approach are different from those of DRG, in that
no threshold behavior appears, and even more significantly
different from the results of the scaling approach, it is a good
idea to address this question numerically in order to decide
between the competing results. A revision of the DRG ap-
proach to this problem might also help here, since, as was
suspected in Sec. V, the difference between the DRG results
and those derived here in one dimension might stem from a
misunderstanding of the long-time behavior of the system.
As was shown in the last section, there is a big advantage in
using the self-consistent approach as it can be generalized in
a simple way to discuss noise with arbitrary spatiotemporal
correlations. Two such examples were discussed, and explicit
predictions were made. Here too, future research may help to
test the validity of these predictions.
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